Learning the mechanisms of network growth
- URL: http://arxiv.org/abs/2404.00793v3
- Date: Mon, 27 May 2024 17:52:07 GMT
- Title: Learning the mechanisms of network growth
- Authors: Lourens Touwen, Doina Bucur, Remco van der Hofstad, Alessandro Garavaglia, Nelly Litvak,
- Abstract summary: We propose a novel model-selection method for dynamic networks.
Data is generated by simulating nine state-of-the-art random graph models.
Proposed features are easy to compute, analytically tractable, and interpretable.
- Score: 42.1340910148224
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel model-selection method for dynamic networks. Our approach involves training a classifier on a large body of synthetic network data. The data is generated by simulating nine state-of-the-art random graph models for dynamic networks, with parameter range chosen to ensure exponential growth of the network size in time. We design a conceptually novel type of dynamic features that count new links received by a group of vertices in a particular time interval. The proposed features are easy to compute, analytically tractable, and interpretable. Our approach achieves a near-perfect classification of synthetic networks, exceeding the state-of-the-art by a large margin. Applying our classification method to real-world citation networks gives credibility to the claims in the literature that models with preferential attachment, fitness and aging fit real-world citation networks best, although sometimes, the predicted model does not involve vertex fitness.
Related papers
- Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
We present a new class of equivariant neural networks, dubbed Lattice-Equivariant Neural Networks (LENNs)
Our approach develops within a recently introduced framework aimed at learning neural network-based surrogate models Lattice Boltzmann collision operators.
Our work opens towards practical utilization of machine learning-augmented Lattice Boltzmann CFD in real-world simulations.
arXiv Detail & Related papers (2024-05-22T17:23:15Z) - GNN-LoFI: a Novel Graph Neural Network through Localized Feature-based
Histogram Intersection [51.608147732998994]
Graph neural networks are increasingly becoming the framework of choice for graph-based machine learning.
We propose a new graph neural network architecture that substitutes classical message passing with an analysis of the local distribution of node features.
arXiv Detail & Related papers (2024-01-17T13:04:23Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Dynamic Mixed Membership Stochastic Block Model for Weighted Labeled
Networks [3.5450828190071655]
A new family of Mixed Membership Block Models (MMSBM) allows to model static labeled networks under the assumption of mixed-membership clustering.
We show that our method significantly differs from existing approaches, and allows to model more complex systems --dynamic labeled networks.
arXiv Detail & Related papers (2023-04-12T15:01:03Z) - Information-Theoretic GAN Compression with Variational Energy-based
Model [36.77535324130402]
We propose an information-theoretic knowledge distillation approach for the compression of generative adversarial networks.
We show that the proposed algorithm achieves outstanding performance in model compression of generative adversarial networks consistently.
arXiv Detail & Related papers (2023-03-28T15:32:21Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Mutually exciting point process graphs for modelling dynamic networks [0.0]
A new class of models for dynamic networks is proposed, called mutually exciting point process graphs (MEG)
MEG is a scalable network-wide statistical model for point processes with dyadic marks, which can be used for anomaly detection.
The model is tested on simulated graphs and real world computer network datasets, demonstrating excellent performance.
arXiv Detail & Related papers (2021-02-11T10:14:55Z) - Link Prediction for Temporally Consistent Networks [6.981204218036187]
Link prediction estimates the next relationship in dynamic networks.
The use of adjacency matrix to represent dynamically evolving networks limits the ability to analytically learn from heterogeneous, sparse, or forming networks.
We propose a new method of canonically representing heterogeneous time-evolving activities as a temporally parameterized network model.
arXiv Detail & Related papers (2020-06-06T07:28:03Z) - Modeling Dynamic Heterogeneous Network for Link Prediction using
Hierarchical Attention with Temporal RNN [16.362525151483084]
We propose a novel dynamic heterogeneous network embedding method, termed as DyHATR.
It uses hierarchical attention to learn heterogeneous information and incorporates recurrent neural networks with temporal attention to capture evolutionary patterns.
We benchmark our method on four real-world datasets for the task of link prediction.
arXiv Detail & Related papers (2020-04-01T17:16:47Z) - Model Fusion via Optimal Transport [64.13185244219353]
We present a layer-wise model fusion algorithm for neural networks.
We show that this can successfully yield "one-shot" knowledge transfer between neural networks trained on heterogeneous non-i.i.d. data.
arXiv Detail & Related papers (2019-10-12T22:07:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.