Information-Theoretic GAN Compression with Variational Energy-based
Model
- URL: http://arxiv.org/abs/2303.16050v1
- Date: Tue, 28 Mar 2023 15:32:21 GMT
- Title: Information-Theoretic GAN Compression with Variational Energy-based
Model
- Authors: Minsoo Kang, Hyewon Yoo, Eunhee Kang, Sehwan Ki, Hyong-Euk Lee,
Bohyung Han
- Abstract summary: We propose an information-theoretic knowledge distillation approach for the compression of generative adversarial networks.
We show that the proposed algorithm achieves outstanding performance in model compression of generative adversarial networks consistently.
- Score: 36.77535324130402
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose an information-theoretic knowledge distillation approach for the
compression of generative adversarial networks, which aims to maximize the
mutual information between teacher and student networks via a variational
optimization based on an energy-based model. Because the direct computation of
the mutual information in continuous domains is intractable, our approach
alternatively optimizes the student network by maximizing the variational lower
bound of the mutual information. To achieve a tight lower bound, we introduce
an energy-based model relying on a deep neural network to represent a flexible
variational distribution that deals with high-dimensional images and consider
spatial dependencies between pixels, effectively. Since the proposed method is
a generic optimization algorithm, it can be conveniently incorporated into
arbitrary generative adversarial networks and even dense prediction networks,
e.g., image enhancement models. We demonstrate that the proposed algorithm
achieves outstanding performance in model compression of generative adversarial
networks consistently when combined with several existing models.
Related papers
- DiffSG: A Generative Solver for Network Optimization with Diffusion Model [75.27274046562806]
Diffusion generative models can consider a broader range of solutions and exhibit stronger generalization by learning parameters.
We propose a new framework, which leverages intrinsic distribution learning of diffusion generative models to learn high-quality solutions.
arXiv Detail & Related papers (2024-08-13T07:56:21Z) - Learning the mechanisms of network growth [42.1340910148224]
We propose a novel model-selection method for dynamic networks.
Data is generated by simulating nine state-of-the-art random graph models.
Proposed features are easy to compute, analytically tractable, and interpretable.
arXiv Detail & Related papers (2024-03-31T20:38:59Z) - Generative Neural Fields by Mixtures of Neural Implicit Functions [43.27461391283186]
We propose a novel approach to learning the generative neural fields represented by linear combinations of implicit basis networks.
Our algorithm learns basis networks in the form of implicit neural representations and their coefficients in a latent space by either conducting meta-learning or adopting auto-decoding paradigms.
arXiv Detail & Related papers (2023-10-30T11:41:41Z) - Dynamic Kernel-Based Adaptive Spatial Aggregation for Learned Image
Compression [63.56922682378755]
We focus on extending spatial aggregation capability and propose a dynamic kernel-based transform coding.
The proposed adaptive aggregation generates kernel offsets to capture valid information in the content-conditioned range to help transform.
Experimental results demonstrate that our method achieves superior rate-distortion performance on three benchmarks compared to the state-of-the-art learning-based methods.
arXiv Detail & Related papers (2023-08-17T01:34:51Z) - Towards a Better Theoretical Understanding of Independent Subnetwork Training [56.24689348875711]
We take a closer theoretical look at Independent Subnetwork Training (IST)
IST is a recently proposed and highly effective technique for solving the aforementioned problems.
We identify fundamental differences between IST and alternative approaches, such as distributed methods with compressed communication.
arXiv Detail & Related papers (2023-06-28T18:14:22Z) - Provably Efficient Reinforcement Learning for Online Adaptive Influence
Maximization [53.11458949694947]
We consider an adaptive version of content-dependent online influence problem where seed nodes are sequentially activated based on realtime feedback.
Our algorithm maintains a network model estimate and selects seed adaptively, exploring the social network while improving the optimal policy optimistically.
arXiv Detail & Related papers (2022-06-29T18:17:28Z) - Graph-based Algorithm Unfolding for Energy-aware Power Allocation in
Wireless Networks [27.600081147252155]
We develop a novel graph sumable framework to maximize energy efficiency in wireless communication networks.
We show the permutation training which is a desirable property for models of wireless network data.
Results demonstrate its generalizability across different network topologies.
arXiv Detail & Related papers (2022-01-27T20:23:24Z) - Deep Variational Models for Collaborative Filtering-based Recommender
Systems [63.995130144110156]
Deep learning provides accurate collaborative filtering models to improve recommender system results.
Our proposed models apply the variational concept to injectity in the latent space of the deep architecture.
Results show the superiority of the proposed approach in scenarios where the variational enrichment exceeds the injected noise effect.
arXiv Detail & Related papers (2021-07-27T08:59:39Z) - Prediction-Centric Learning of Independent Cascade Dynamics from Partial
Observations [13.680949377743392]
We address the problem of learning of a spreading model such that the predictions generated from this model are accurate.
We introduce a computationally efficient algorithm, based on a scalable dynamic message-passing approach.
We show that tractable inference from the learned model generates a better prediction of marginal probabilities compared to the original model.
arXiv Detail & Related papers (2020-07-13T17:58:21Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
We propose a novel learning framework for inference and estimation problems of diffusion on networks.
Our framework is derived from the Mori-Zwanzig formalism to obtain an exact evolution of the node infection probabilities.
Our approach is versatile and robust to variations of the underlying diffusion network models.
arXiv Detail & Related papers (2020-06-16T18:45:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.