Metarobotics for Industry and Society: Vision, Technologies, and Opportunities
- URL: http://arxiv.org/abs/2404.00797v2
- Date: Sun, 7 Apr 2024 02:05:49 GMT
- Title: Metarobotics for Industry and Society: Vision, Technologies, and Opportunities
- Authors: Eric Guiffo Kaigom,
- Abstract summary: Metarobotics aims to combine next generation wireless communication, multi-sense immersion, and collective intelligence.
Students enrolled in robotics courses will be taught under authentic industrial conditions in real-time.
Potentials for self-determination, self-efficacy, and work-life-flexibility in robotics-related applications in Society 5.0, Industry 4.0, and Industry 5.0 are outlined.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Metarobotics aims to combine next generation wireless communication, multi-sense immersion, and collective intelligence to provide a pervasive, itinerant, and non-invasive access and interaction with distant robotized applications. Industry and society are expected to benefit from these functionalities. For instance, robot programmers will no longer travel worldwide to plan and test robot motions, even collaboratively. Instead, they will have a personalized access to robots and their environments from anywhere, thus spending more time with family and friends. Students enrolled in robotics courses will be taught under authentic industrial conditions in real-time. This paper describes objectives of Metarobotics in society, industry, and in-between. It identifies and surveys technologies likely to enable their completion and provides an architecture to put forward the interplay of key components of Metarobotics. Potentials for self-determination, self-efficacy, and work-life-flexibility in robotics-related applications in Society 5.0, Industry 4.0, and Industry 5.0 are outlined.
Related papers
- Generalized Robot Learning Framework [10.03174544844559]
We present a low-cost robot learning framework that is both easily reproducible and transferable to various robots and environments.
We demonstrate that deployable imitation learning can be successfully applied even to industrial-grade robots.
arXiv Detail & Related papers (2024-09-18T15:34:31Z) - Socially Pertinent Robots in Gerontological Healthcare [78.35311825198136]
This paper is an attempt to partially answer the question, via two waves of experiments with patients and companions in a day-care gerontological facility in Paris with a full-sized humanoid robot endowed with social and conversational interaction capabilities.
Overall, the users are receptive to this technology, especially when the robot perception and action skills are robust to environmental clutter and flexible to handle a plethora of different interactions.
arXiv Detail & Related papers (2024-04-11T08:43:37Z) - RoboScript: Code Generation for Free-Form Manipulation Tasks across Real
and Simulation [77.41969287400977]
This paper presents textbfRobotScript, a platform for a deployable robot manipulation pipeline powered by code generation.
We also present a benchmark for a code generation benchmark for robot manipulation tasks in free-form natural language.
We demonstrate the adaptability of our code generation framework across multiple robot embodiments, including the Franka and UR5 robot arms.
arXiv Detail & Related papers (2024-02-22T15:12:00Z) - A novel integrated industrial approach with cobots in the age of
industry 4.0 through conversational interaction and computer vision [1.2848575793946582]
From robots that replace workers to robots that serve as helpful colleagues, the field of robotic automation is experiencing a new trend.
From robots that replace workers to robots that serve as helpful colleagues, the field of robotic automation is experiencing a new trend.
arXiv Detail & Related papers (2024-02-16T10:35:01Z) - World Models and Predictive Coding for Cognitive and Developmental
Robotics: Frontiers and Challenges [51.92834011423463]
We focus on the two concepts of world models and predictive coding.
In neuroscience, predictive coding proposes that the brain continuously predicts its inputs and adapts to model its own dynamics and control behavior in its environment.
arXiv Detail & Related papers (2023-01-14T06:38:14Z) - Spatial Computing and Intuitive Interaction: Bringing Mixed Reality and
Robotics Together [68.44697646919515]
This paper presents several human-robot systems that utilize spatial computing to enable novel robot use cases.
The combination of spatial computing and egocentric sensing on mixed reality devices enables them to capture and understand human actions and translate these to actions with spatial meaning.
arXiv Detail & Related papers (2022-02-03T10:04:26Z) - Dual-Arm Adversarial Robot Learning [0.6091702876917281]
We propose dual-arm settings as platforms for robot learning.
We will discuss the potential benefits of this setup as well as the challenges and research directions that can be pursued.
arXiv Detail & Related papers (2021-10-15T12:51:57Z) - Future Intelligent Autonomous Robots, Ethical by Design. Learning from
Autonomous Cars Ethics [19.911701966878947]
The field of ethics of intelligent autonomous robotic cars is a good example of research with actionable practical value.
It could be used as a starting platform for the approaches to the development of intelligent autonomous robots.
Drawing from our work on ethics of autonomous intelligent robocars, and the existing literature on ethics of robotics, our contribution consists of a set of values and ethical principles.
arXiv Detail & Related papers (2021-07-16T21:10:04Z) - From Learning to Relearning: A Framework for Diminishing Bias in Social
Robot Navigation [3.3511723893430476]
We argue that social navigation models can replicate, promote, and amplify societal unfairness such as discrimination and segregation.
Our proposed framework consists of two components: textitlearning which incorporates social context into the learning process to account for safety and comfort, and textitrelearning to detect and correct potentially harmful outcomes before the onset.
arXiv Detail & Related papers (2021-01-07T17:42:35Z) - Semantics for Robotic Mapping, Perception and Interaction: A Survey [93.93587844202534]
Study of understanding dictates what does the world "mean" to a robot.
With humans and robots increasingly operating in the same world, the prospects of human-robot interaction also bring semantics into the picture.
Driven by need, as well as by enablers like increasing availability of training data and computational resources, semantics is a rapidly growing research area in robotics.
arXiv Detail & Related papers (2021-01-02T12:34:39Z) - SAPIEN: A SimulAted Part-based Interactive ENvironment [77.4739790629284]
SAPIEN is a realistic and physics-rich simulated environment that hosts a large-scale set for articulated objects.
We evaluate state-of-the-art vision algorithms for part detection and motion attribute recognition as well as demonstrate robotic interaction tasks.
arXiv Detail & Related papers (2020-03-19T00:11:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.