論文の概要: 3MOS: Multi-sources, Multi-resolutions, and Multi-scenes dataset for Optical-SAR image matching
- arxiv url: http://arxiv.org/abs/2404.00838v1
- Date: Mon, 1 Apr 2024 00:31:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 01:31:23.575463
- Title: 3MOS: Multi-sources, Multi-resolutions, and Multi-scenes dataset for Optical-SAR image matching
- Title(参考訳): 3MOS:光SAR画像マッチングのためのマルチソース、マルチレゾリューション、マルチシーンデータセット
- Authors: Yibin Ye, Xichao Teng, Shuo Chen, Yijie Bian, Tao Tan, Zhang Li,
- Abstract要約: 光SAR画像マッチングのための大規模マルチソース、マルチ解像度、マルチシーンデータセット(3MOS)を紹介する。
6つの商用衛星からのSARデータを含む155Kの光学SAR画像対で構成され、解像度は1.25mから12.5mである。
データは、都市、農村、平野、丘、山、水、砂漠、凍った土を含む8つのシーンに分類されている。
- 参考スコア(独自算出の注目度): 6.13702551312774
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optical-SAR image matching is a fundamental task for image fusion and visual navigation. However, all large-scale open SAR dataset for methods development are collected from single platform, resulting in limited satellite types and spatial resolutions. Since images captured by different sensors vary significantly in both geometric and radiometric appearance, existing methods may fail to match corresponding regions containing the same content. Besides, most of existing datasets have not been categorized based on the characteristics of different scenes. To encourage the design of more general multi-modal image matching methods, we introduce a large-scale Multi-sources,Multi-resolutions, and Multi-scenes dataset for Optical-SAR image matching(3MOS). It consists of 155K optical-SAR image pairs, including SAR data from six commercial satellites, with resolutions ranging from 1.25m to 12.5m. The data has been classified into eight scenes including urban, rural, plains, hills, mountains, water, desert, and frozen earth. Extensively experiments show that none of state-of-the-art methods achieve consistently superior performance across different sources, resolutions and scenes. In addition, the distribution of data has a substantial impact on the matching capability of deep learning models, this proposes the domain adaptation challenge in optical-SAR image matching. Our data and code will be available at:https://github.com/3M-OS/3MOS.
- Abstract(参考訳): 光-SAR画像マッチングは画像融合と視覚ナビゲーションの基本課題である。
しかしながら、メソッド開発のための大規模オープンSARデータセットは、単一のプラットフォームから収集され、衛星タイプや空間解像度が制限される。
異なるセンサによって撮像された画像は幾何学的および放射的外観の両方で大きく異なるため、既存の方法では同じ内容を含む対応する領域と一致しない可能性がある。
さらに、既存のデータセットのほとんどは、異なるシーンの特徴に基づいて分類されていない。
より一般的なマルチモーダル画像マッチング手法の設計を促進するために,光学SAR画像マッチング(3MOS)のための大規模マルチソース,マルチ解像度,マルチシーンデータセットを導入する。
6つの商用衛星からのSARデータを含む155Kの光学SAR画像対で構成され、解像度は1.25mから12.5mである。
データは、都市、農村、平野、丘、山、水、砂漠、凍った土を含む8つのシーンに分類されている。
大規模な実験では、どの最先端の手法も、異なるソース、解像度、シーンにわたって一貫して優れたパフォーマンスを達成していないことが示されている。
さらに、データの分布がディープラーニングモデルのマッチング能力に大きく影響し、光-SAR画像マッチングにおける領域適応チャレンジを提案する。
私たちのデータとコードは、https://github.com/3M-OS/3MOS.comで公開されます。
関連論文リスト
- Deep Multimodal Fusion for Semantic Segmentation of Remote Sensing Earth Observation Data [0.08192907805418582]
本稿では,セマンティックセグメンテーションのための後期融合深層学習モデル(LF-DLM)を提案する。
1つのブランチは、UNetFormerがキャプチャした空中画像の詳細なテクスチャと、ViT(Multi-Axis Vision Transformer)バックボーンを統合する。
もう一方のブランチは、U-ViNet(U-TAE)を用いてSentinel-2衛星画像Max時系列から複雑な時間ダイナミクスをキャプチャする。
論文 参考訳(メタデータ) (2024-10-01T07:50:37Z) - MLMT-CNN for Object Detection and Segmentation in Multi-layer and Multi-spectral Images [4.2623421577291225]
画像バンド間の依存関係を利用して3次元ARローカライゼーションを生成するマルチタスク深層学習フレームワークを提案する。
我々のフレームワークは、すべてのモードで平均0.72 IoUと0.90 F1スコアを達成する。
論文 参考訳(メタデータ) (2024-07-19T17:21:53Z) - An evaluation of Deep Learning based stereo dense matching dataset shift
from aerial images and a large scale stereo dataset [2.048226951354646]
そこで本研究では,光検出・ランドング(LiDAR)と画像から直接地中不均質マップを生成する手法を提案する。
多様なシーンタイプ、画像解像度、幾何学的構成を持つデータセット間の11の密マッチング手法を評価した。
論文 参考訳(メタデータ) (2024-02-19T20:33:46Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS)は、コンピュータビジョンと自然言語処理を組み合わせた新しい課題である。
従来の参照画像(RIS)アプローチは、空中画像に見られる複雑な空間スケールと向きによって妨げられている。
本稿ではRMSIN(Rotated Multi-Scale Interaction Network)を紹介する。
論文 参考訳(メタデータ) (2023-12-19T08:14:14Z) - DiffusionSat: A Generative Foundation Model for Satellite Imagery [63.2807119794691]
現在、DiffusionSatは、現在利用可能な大規模な高解像度リモートセンシングデータセットのコレクションに基づいてトレーニングされている、最大の生成基盤モデルである。
提案手法は, リアルタイムなサンプルを作成し, 時間生成, マルチスペクトル入力の超解像, インペイントなどの複数の生成課題を解くのに利用できる。
論文 参考訳(メタデータ) (2023-12-06T16:53:17Z) - Multi-Content Complementation Network for Salient Object Detection in
Optical Remote Sensing Images [108.79667788962425]
光リモートセンシング画像(RSI-SOD)における有能な物体検出は、いまだに課題である。
本稿では, RSI-SOD における複数コンテンツの相補性を検討するために, MCCNet (Multi-Content Complementation Network) を提案する。
MCCMでは、前景機能、エッジ機能、背景機能、グローバル画像レベル機能など、RSI-SODにとって重要な複数の機能について検討する。
論文 参考訳(メタデータ) (2021-12-02T04:46:40Z) - Aerial Images Meet Crowdsourced Trajectories: A New Approach to Robust
Road Extraction [110.61383502442598]
我々は、Cross-Modal Message Propagation Network (CMMPNet)と呼ばれる新しいニューラルネットワークフレームワークを紹介する。
CMMPNetは、モダリティ固有の表現学習のための2つのディープオートエンコーダと、クロスモーダル表現洗練のためのテーラー設計のデュアルエンハンスメントモジュールで構成されている。
実世界の3つのベンチマーク実験により, CMMPNetによる堅牢な道路抽出の有効性が示された。
論文 参考訳(メタデータ) (2021-11-30T04:30:10Z) - Sci-Net: a Scale Invariant Model for Building Detection from Aerial
Images [0.0]
本研究では,空間分解能の異なる空間画像に存在している建物を分割できるスケール不変ニューラルネットワーク(Sci-Net)を提案する。
具体的には,U-Netアーキテクチャを改良し,それを高密度なASPP(Atrous Space Pyramid Pooling)で融合し,微細なマルチスケール表現を抽出した。
論文 参考訳(メタデータ) (2021-11-12T16:45:20Z) - The QXS-SAROPT Dataset for Deep Learning in SAR-Optical Data Fusion [14.45289690639374]
QXS-SAROPTデータセットを公開し、SAR-オプティカルデータ融合におけるディープラーニング研究を促進します。
光学画像からのクロスモーダル情報によって強化されたSAR光画像マッチングとSAR船舶検出の2つの代表的な用途の例を示す。
論文 参考訳(メタデータ) (2021-03-15T10:22:46Z) - X-ModalNet: A Semi-Supervised Deep Cross-Modal Network for
Classification of Remote Sensing Data [69.37597254841052]
我々はX-ModalNetと呼ばれる新しいクロスモーダルディープラーニングフレームワークを提案する。
X-ModalNetは、ネットワークの上部にある高レベルな特徴によって構築されたアップダスタブルグラフ上にラベルを伝搬するため、うまく一般化する。
我々は2つのマルチモーダルリモートセンシングデータセット(HSI-MSIとHSI-SAR)上でX-ModalNetを評価し、いくつかの最先端手法と比較して大幅に改善した。
論文 参考訳(メタデータ) (2020-06-24T15:29:41Z) - Real-MFF: A Large Realistic Multi-focus Image Dataset with Ground Truth [58.226535803985804]
我々はReal-MFFと呼ばれる大規模で現実的なマルチフォーカスデータセットを導入する。
データセットは、710対のソースイメージと対応する接地真理画像を含む。
このデータセット上で10の典型的なマルチフォーカスアルゴリズムを図示のために評価する。
論文 参考訳(メタデータ) (2020-03-28T12:33:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。