DiSR-NeRF: Diffusion-Guided View-Consistent Super-Resolution NeRF
- URL: http://arxiv.org/abs/2404.00874v1
- Date: Mon, 1 Apr 2024 03:06:23 GMT
- Title: DiSR-NeRF: Diffusion-Guided View-Consistent Super-Resolution NeRF
- Authors: Jie Long Lee, Chen Li, Gim Hee Lee,
- Abstract summary: DiSR-NeRF is a diffusion-guided framework for view-consistent super-resolution (SR) NeRF.
We propose Iterative 3D Synchronization (I3DS) to mitigate the inconsistency problem via the inherent multi-view consistency property of NeRF.
- Score: 50.458896463542494
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present DiSR-NeRF, a diffusion-guided framework for view-consistent super-resolution (SR) NeRF. Unlike prior works, we circumvent the requirement for high-resolution (HR) reference images by leveraging existing powerful 2D super-resolution models. Nonetheless, independent SR 2D images are often inconsistent across different views. We thus propose Iterative 3D Synchronization (I3DS) to mitigate the inconsistency problem via the inherent multi-view consistency property of NeRF. Specifically, our I3DS alternates between upscaling low-resolution (LR) rendered images with diffusion models, and updating the underlying 3D representation with standard NeRF training. We further introduce Renoised Score Distillation (RSD), a novel score-distillation objective for 2D image resolution. Our RSD combines features from ancestral sampling and Score Distillation Sampling (SDS) to generate sharp images that are also LR-consistent. Qualitative and quantitative results on both synthetic and real-world datasets demonstrate that our DiSR-NeRF can achieve better results on NeRF super-resolution compared with existing works. Code and video results available at the project website.
Related papers
- Advancing Super-Resolution in Neural Radiance Fields via Variational Diffusion Strategies [0.0]
We present a novel method for diffusion-guided frameworks for view-consistent super-resolution (SR) in neural rendering.
Our approach leverages existing 2D SR models in conjunction with advanced techniques such as Variational Score Distilling (VSD) and a LoRA fine-tuning helper.
arXiv Detail & Related papers (2024-10-22T00:02:26Z) - ASSR-NeRF: Arbitrary-Scale Super-Resolution on Voxel Grid for High-Quality Radiance Fields Reconstruction [27.21399221644529]
NeRF-based methods reconstruct 3D scenes by building a radiance field with implicit or explicit representations.
We propose Arbitrary-Scale Super-Resolution NeRF (ASSR-NeRF), a novel framework for super-resolution novel view synthesis (SRNVS)
arXiv Detail & Related papers (2024-06-28T17:22:33Z) - Super-NeRF: View-consistent Detail Generation for NeRF super-resolution [39.58800919345451]
We propose a NeRF super-resolution method, named Super-NeRF, to generate high-resolution NeRF from only low-resolution inputs.
Super-NeRF achieves state-of-the-art NeRF super-resolution performance on high-resolution detail generation and cross-view consistency.
arXiv Detail & Related papers (2023-04-26T12:54:40Z) - Single-Stage Diffusion NeRF: A Unified Approach to 3D Generation and
Reconstruction [77.69363640021503]
3D-aware image synthesis encompasses a variety of tasks, such as scene generation and novel view synthesis from images.
We present SSDNeRF, a unified approach that employs an expressive diffusion model to learn a generalizable prior of neural radiance fields (NeRF) from multi-view images of diverse objects.
arXiv Detail & Related papers (2023-04-13T17:59:01Z) - NerfDiff: Single-image View Synthesis with NeRF-guided Distillation from
3D-aware Diffusion [107.67277084886929]
Novel view synthesis from a single image requires inferring occluded regions of objects and scenes whilst simultaneously maintaining semantic and physical consistency with the input.
We propose NerfDiff, which addresses this issue by distilling the knowledge of a 3D-aware conditional diffusion model (CDM) into NeRF through synthesizing and refining a set of virtual views at test time.
We further propose a novel NeRF-guided distillation algorithm that simultaneously generates 3D consistent virtual views from the CDM samples, and finetunes the NeRF based on the improved virtual views.
arXiv Detail & Related papers (2023-02-20T17:12:00Z) - Aug-NeRF: Training Stronger Neural Radiance Fields with Triple-Level
Physically-Grounded Augmentations [111.08941206369508]
We propose Augmented NeRF (Aug-NeRF), which for the first time brings the power of robust data augmentations into regularizing the NeRF training.
Our proposal learns to seamlessly blend worst-case perturbations into three distinct levels of the NeRF pipeline.
Aug-NeRF effectively boosts NeRF performance in both novel view synthesis and underlying geometry reconstruction.
arXiv Detail & Related papers (2022-07-04T02:27:07Z) - NeRF-SR: High-Quality Neural Radiance Fields using Super-Sampling [82.99453001445478]
We present NeRF-SR, a solution for high-resolution (HR) novel view synthesis with mostly low-resolution (LR) inputs.
Our method is built upon Neural Radiance Fields (NeRF) that predicts per-point density and color with a multi-layer perceptron.
arXiv Detail & Related papers (2021-12-03T07:33:47Z) - Frequency Consistent Adaptation for Real World Super Resolution [64.91914552787668]
We propose a novel Frequency Consistent Adaptation (FCA) that ensures the frequency domain consistency when applying Super-Resolution (SR) methods to the real scene.
We estimate degradation kernels from unsupervised images and generate the corresponding Low-Resolution (LR) images.
Based on the domain-consistent LR-HR pairs, we train easy-implemented Convolutional Neural Network (CNN) SR models.
arXiv Detail & Related papers (2020-12-18T08:25:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.