論文の概要: Slightly Shift New Classes to Remember Old Classes for Video Class-Incremental Learning
- arxiv url: http://arxiv.org/abs/2404.00901v1
- Date: Mon, 1 Apr 2024 03:58:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-03 23:26:11.507520
- Title: Slightly Shift New Classes to Remember Old Classes for Video Class-Incremental Learning
- Title(参考訳): ビデオ授業増分学習のための旧クラスを思い出すための新しいクラスをすっきりとシフトさせる
- Authors: Jian Jiao, Yu Dai, Hefei Mei, Heqian Qiu, Chuanyang Gong, Shiyuan Tang, Xinpeng Hao, Hongliang Li,
- Abstract要約: 従来のクラスを思い出すために,新しいクラスの特徴をわずかにシフトさせるSNROを提案する。
ESはより低いサンプルレートでメモリセットを構築し、これらのスパースフレームを将来的に調整するために使用します。
EBは小さなエポックでトレーニングを終了し、モデルが現在のタスクの高意味空間にオーバーストレッチすることを防ぐ。
- 参考スコア(独自算出の注目度): 14.199974986278438
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent video class-incremental learning usually excessively pursues the accuracy of the newly seen classes and relies on memory sets to mitigate catastrophic forgetting of the old classes. However, limited storage only allows storing a few representative videos. So we propose SNRO, which slightly shifts the features of new classes to remember old classes. Specifically, SNRO contains Examples Sparse(ES) and Early Break(EB). ES decimates at a lower sample rate to build memory sets and uses interpolation to align those sparse frames in the future. By this, SNRO stores more examples under the same memory consumption and forces the model to focus on low-semantic features which are harder to be forgotten. EB terminates the training at a small epoch, preventing the model from overstretching into the high-semantic space of the current task. Experiments on UCF101, HMDB51, and UESTC-MMEA-CL datasets show that SNRO performs better than other approaches while consuming the same memory consumption.
- Abstract(参考訳): 最近のビデオクラス増分学習は、通常、新しく見られるクラスの精度を過度に追求し、古いクラスの破滅的な忘れを和らげるためにメモリセットに依存している。
しかし、限られたストレージでは、いくつかの代表的ビデオしか保存できない。
そこで我々はSNROを提案する。SNROは古いクラスを思い出すために新しいクラスの機能をわずかにシフトさせる。
具体的には、SNRO は Examples Sparse(ES) と Early Break(EB) を含む。
ESは、より低いサンプルレートでメモリセットを構築し、補間を使用して、これらのスパースフレームを将来的に整列させる。
これにより、SNROは、同じメモリ消費下でより多くのサンプルを格納し、モデルを忘れがちな低セマンティックな機能に集中させます。
EBは小さなエポックでトレーニングを終了し、モデルが現在のタスクの高意味空間にオーバーストレッチすることを防ぐ。
UCF101、HMDB51、UESTC-MMEA-CLデータセットに対する実験は、SNROが同じメモリ消費を消費しながら他のアプローチよりも優れていることを示している。
関連論文リスト
- PASS++: A Dual Bias Reduction Framework for Non-Exemplar Class-Incremental Learning [49.240408681098906]
クラスインクリメンタルラーニング(CIL)は,旧クラスの識別性を維持しつつ,新たなクラスを段階的に認識することを目的としている。
既存のCILメソッドの多くは、例えば、古いデータの一部を格納して再トレーニングする例がある。
本稿では、入力空間における自己教師付き変換(SST)と深い特徴空間におけるプロトタイプ拡張(protoAug)を利用する、単純で斬新な二重バイアス低減フレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-19T05:03:16Z) - Expandable Subspace Ensemble for Pre-Trained Model-Based Class-Incremental Learning [65.57123249246358]
PTMベースのCILのためのExpAndable Subspace Ensemble (EASE)を提案する。
タスク固有のサブスペースを作成することを目的として、新しいタスクごとに異なる軽量アダプタモジュールをトレーニングする。
我々のプロトタイプ補完戦略は、古いクラスのインスタンスを使わずに、古いクラスの新機能を合成します。
論文 参考訳(メタデータ) (2024-03-18T17:58:13Z) - Class-Incremental Learning: A Survey [84.30083092434938]
CIL(Class-Incremental Learning)は、学習者が新しいクラスの知識を段階的に取り入れることを可能にする。
CILは、前者の特徴を壊滅的に忘れる傾向にあり、その性能は劇的に低下する。
ベンチマーク画像分類タスクにおける17の手法の厳密で統一的な評価を行い、異なるアルゴリズムの特徴を明らかにする。
論文 参考訳(メタデータ) (2023-02-07T17:59:05Z) - A Memory Transformer Network for Incremental Learning [64.0410375349852]
本研究では,モデルが学習する時間とともに,新しいデータクラスが観察される学習環境であるクラスインクリメンタルラーニングについて検討する。
素直な問題定式化にもかかわらず、クラス増分学習への分類モデルの素直な適用は、これまで見られたクラスの「破滅的な忘れ込み」をもたらす。
これは、過去のデータのサブセットをメモリバンクに保存し、将来のタスクをトレーニングする際の忘れの防止にそれを活用することで、破滅的な忘れの問題を克服するものだ。
論文 参考訳(メタデータ) (2022-10-10T08:27:28Z) - Memory Population in Continual Learning via Outlier Elimination [25.511380924335207]
破滅的な忘れは、新しいタスクを学ぶ際に学習したタスクを忘れる現象であり、継続的な学習アルゴリズムを開発する上で大きなハードルとなる。
忘れを緩和する一般的な方法は、新しいタスクのトレーニングで使用する前に学習したタスク例のサブセットを格納するメモリバッファを使用することである。
本稿では,ラベル同種サブポピュレーションからサンプルを選択することにより,メモリバッファ内の外れ値の識別と除去を行うメモリ・アウトレイラ除去法(MOE)を提案する。
論文 参考訳(メタデータ) (2022-07-04T00:09:33Z) - A Model or 603 Exemplars: Towards Memory-Efficient Class-Incremental
Learning [56.450090618578]
CIL(Class-Incremental Learning)は、この要件を満たすために、限られたメモリサイズでモデルをトレーニングすることを目的としている。
モデルサイズを総予算にカウントし,メモリサイズに整合する手法を比較すると,保存モデルは常に機能しないことを示す。
本稿では,メモリ効率のよい拡張可能なMOdelのための MEMO という,シンプルで効果的なベースラインを提案する。
論文 参考訳(メタデータ) (2022-05-26T08:24:01Z) - Few-Shot Class-Incremental Learning by Sampling Multi-Phase Tasks [59.12108527904171]
モデルは新しいクラスを認識し、古いクラスに対する差別性を維持すべきである。
古いクラスを忘れずに新しいクラスを認識するタスクは、FSCIL ( few-shot class-incremental Learning) と呼ばれる。
我々は,LearnIng Multi-phase Incremental Tasks (LIMIT) によるメタラーニングに基づくFSCILの新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2022-03-31T13:46:41Z) - Constrained Few-shot Class-incremental Learning [14.646083882851928]
古いクラスの知識を忘れずに新しいデータから新しいクラスを継続的に学習することは、非常に難しい研究課題である。
本稿では,C-FSCILを提案する。C-FSCILは,凍結したメタ学習特徴抽出器,トレーニング可能な固定サイズ全接続層,動的に成長するメモリから構成される。
C-FSCILは3つの更新モードを提供し、新しいクラスを学習する際の正確性と計算メモリコストのトレードオフを提供する。
論文 参考訳(メタデータ) (2022-03-30T18:19:36Z) - ZS-IL: Looking Back on Learned ExperiencesFor Zero-Shot Incremental
Learning [9.530976792843495]
データストリームで新しいクラスが発生するたびに過去の体験を提供するオンコール転送セットを提案します。
ZS-ILは、よく知られたデータセット(CIFAR-10、Tiny-ImageNet)において、Task-ILとClass-ILの両方で大幅にパフォーマンスが向上している。
論文 参考訳(メタデータ) (2021-03-22T22:43:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。