論文の概要: Constructing and Expanding Low-Resource and Underrepresented Parallel Datasets for Indonesian Local Languages
- arxiv url: http://arxiv.org/abs/2404.01009v1
- Date: Mon, 1 Apr 2024 09:24:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-03 22:56:51.576598
- Title: Constructing and Expanding Low-Resource and Underrepresented Parallel Datasets for Indonesian Local Languages
- Title(参考訳): インドネシアの地方言語のための低リソース・低表現並列データセットの構築と拡張
- Authors: Joanito Agili Lopo, Radius Tanone,
- Abstract要約: インドネシアの5つの言語を特徴とする多言語並列コーパスであるBhinneka Korpusを紹介する。
我々のゴールは、これらの資源へのアクセスと利用を強化し、国内へのリーチを広げることです。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In Indonesia, local languages play an integral role in the culture. However, the available Indonesian language resources still fall into the category of limited data in the Natural Language Processing (NLP) field. This is become problematic when build NLP model for these languages. To address this gap, we introduce Bhinneka Korpus, a multilingual parallel corpus featuring five Indonesian local languages. Our goal is to enhance access and utilization of these resources, extending their reach within the country. We explained in a detail the dataset collection process and associated challenges. Additionally, we experimented with translation task using the IBM Model 1 due to data constraints. The result showed that the performance of each language already shows good indications for further development. Challenges such as lexical variation, smoothing effects, and cross-linguistic variability are discussed. We intend to evaluate the corpus using advanced NLP techniques for low-resource languages, paving the way for multilingual translation models.
- Abstract(参考訳): インドネシアでは、地元の言語が文化において重要な役割を担っている。
しかし、利用可能なインドネシアの言語資源は、NLP(Natural Language Processing)分野の限られたデータカテゴリに分類される。
これらの言語のためのNLPモデルを構築する際に問題となる。
このギャップを解決するために,インドネシアの5つの言語を特徴とする多言語並列コーパスであるBhinneka Korpusを紹介した。
我々のゴールは、これらの資源へのアクセスと利用を強化し、国内へのリーチを広げることです。
私たちはデータセットの収集プロセスと関連する課題について詳しく説明しました。
さらに,データ制約のため,IBM Model 1を用いた翻訳タスクの実験を行った。
その結果, 各言語の性能は, 更なる発展の兆しをすでに示していることがわかった。
語彙変動,滑らか化効果,言語間変動などの課題について論じる。
我々は、低リソース言語のための高度なNLP技術を用いてコーパスを評価することを目的としており、多言語翻訳モデルへの道を開く。
関連論文リスト
- Natural Language Processing for Dialects of a Language: A Survey [56.93337350526933]
最先端自然言語処理(NLP)モデルは、大規模なトレーニングコーパスでトレーニングされ、評価データセットで最上位のパフォーマンスを報告します。
この調査は、これらのデータセットの重要な属性である言語の方言を掘り下げる。
方言データセットに対するNLPモデルの性能劣化と言語技術のエクイティへのその影響を動機として,我々はデータセットやアプローチの観点から,方言に対するNLPの過去の研究を調査した。
論文 参考訳(メタデータ) (2024-01-11T03:04:38Z) - NusaWrites: Constructing High-Quality Corpora for Underrepresented and
Extremely Low-Resource Languages [54.808217147579036]
インドネシアの地方言語について事例研究を行う。
データセット構築におけるオンラインスクラップ,人文翻訳,および母語話者による段落作成の有効性を比較した。
本研究は,母語話者による段落作成によって生成されたデータセットが,語彙的多様性と文化的内容の点で優れた品質を示すことを示す。
論文 参考訳(メタデータ) (2023-09-19T14:42:33Z) - Improving Natural Language Inference in Arabic using Transformer Models
and Linguistically Informed Pre-Training [0.34998703934432673]
本稿では,自然言語処理分野におけるアラビア語テキストデータの分類について述べる。
この制限を克服するため、公開リソースから専用のデータセットを作成します。
言語固有モデル (AraBERT) が最先端の多言語アプローチと競合することがわかった。
論文 参考訳(メタデータ) (2023-07-27T07:40:11Z) - Neural Machine Translation for the Indigenous Languages of the Americas:
An Introduction [102.13536517783837]
アメリカ大陸のほとんどの言語は、もしあるならば、並列データと単言語データしか持たない。
これらの言語におけるNLPコミュニティの関心が高まった結果、最近の進歩、発見、オープンな質問について論じる。
論文 参考訳(メタデータ) (2023-06-11T23:27:47Z) - NusaX: Multilingual Parallel Sentiment Dataset for 10 Indonesian Local
Languages [100.59889279607432]
インドネシアにおける言語の資源開発に重点を置いている。
インドネシアのほとんどの言語は絶滅危惧種に分類され、一部は絶滅している。
インドネシアで10の低リソース言語を対象とした,最初の並列リソースを開発した。
論文 参考訳(メタデータ) (2022-05-31T17:03:50Z) - Can Character-based Language Models Improve Downstream Task Performance
in Low-Resource and Noisy Language Scenarios? [0.0]
我々は、ナラビジ(NArabizi)と呼ばれるラテン文字の拡張を用いて書かれた北アフリカ方言のアラビア語に焦点を当てている。
ナラビジの99k文のみを学習し,小さな木バンクで微調整したキャラクタベースモデルは,大規模多言語モデルとモノリンガルモデルで事前学習した同じアーキテクチャで得られたものに近い性能を示す。
論文 参考訳(メタデータ) (2021-10-26T14:59:16Z) - LaoPLM: Pre-trained Language Models for Lao [3.2146309563776416]
事前訓練された言語モデル(PLM)は、コンテキストにおける異なるレベルの概念をキャプチャし、普遍的な言語表現を生成する。
PTMは、ほとんどのNLPアプリケーションで広く使われているが、Lao NLP研究ではあまり使われていない。
ラオス語の資源管理状況を軽減するために,テキスト分類データセットを構築した。
本稿では,ラオスにおけるトランスフォーマーベースのPTMを,BERT-small,BERT-base,ELECTRA-small,ELECTRA-baseの4つのバージョンで提案する。
論文 参考訳(メタデータ) (2021-10-12T11:13:07Z) - Continual Mixed-Language Pre-Training for Extremely Low-Resource Neural
Machine Translation [53.22775597051498]
我々は,mbart を未熟な言語に効果的に適用するための,継続的な事前学習フレームワークを提案する。
その結果,mBARTベースラインの微調整性能を一貫して改善できることが示された。
私たちのアプローチは、両方の言語が元のmBARTの事前トレーニングで見られる翻訳ペアのパフォーマンスを高めます。
論文 参考訳(メタデータ) (2021-05-09T14:49:07Z) - UNKs Everywhere: Adapting Multilingual Language Models to New Scripts [103.79021395138423]
マルチリンガルBERT(mBERT)やXLM-Rのような多言語言語モデルは、様々なNLPタスクに対して最先端の言語間転送性能を提供する。
キャパシティの制限と事前トレーニングデータの大きな差のため、リソース豊富な言語とリソースを対象とする言語には大きなパフォーマンスギャップがある。
本稿では,事前学習した多言語モデルの低リソース言語や未知のスクリプトへの高速かつ効果的な適応を可能にする新しいデータ効率手法を提案する。
論文 参考訳(メタデータ) (2020-12-31T11:37:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。