論文の概要: Teeth-SEG: An Efficient Instance Segmentation Framework for Orthodontic Treatment based on Anthropic Prior Knowledge
- arxiv url: http://arxiv.org/abs/2404.01013v1
- Date: Mon, 1 Apr 2024 09:34:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-03 22:56:51.571115
- Title: Teeth-SEG: An Efficient Instance Segmentation Framework for Orthodontic Treatment based on Anthropic Prior Knowledge
- Title(参考訳): 歯-SEG : 人為的先行知識に基づく歯科矯正治療のための効率的な症例分割フレームワーク
- Authors: Bo Zou, Shaofeng Wang, Hao Liu, Gaoyue Sun, Yajie Wang, FeiFei Zuo, Chengbin Quan, Youjian Zhao,
- Abstract要約: 本稿では,階層化されたマルチスケールアグリゲーション(MSA)ブロックと,人為的優先知識(APK)レイヤから構成されるTeethSEGというViTベースのフレームワークを提案する。
これらの問題に対処するために,階層化マルチスケールアグリゲーション(MSA)ブロックと人為的優先知識(APK)レイヤからなる,TeethSEGというViTベースのフレームワークを提案する。
IO150Kを用いた実験により, 歯質SEGは, 歯科画像のセグメンテーションにおける最先端のセグメンテーションモデルよりも優れていることが示された。
- 参考スコア(独自算出の注目度): 8.87268139736394
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Teeth localization, segmentation, and labeling in 2D images have great potential in modern dentistry to enhance dental diagnostics, treatment planning, and population-based studies on oral health. However, general instance segmentation frameworks are incompetent due to 1) the subtle differences between some teeth' shapes (e.g., maxillary first premolar and second premolar), 2) the teeth's position and shape variation across subjects, and 3) the presence of abnormalities in the dentition (e.g., caries and edentulism). To address these problems, we propose a ViT-based framework named TeethSEG, which consists of stacked Multi-Scale Aggregation (MSA) blocks and an Anthropic Prior Knowledge (APK) layer. Specifically, to compose the two modules, we design 1) a unique permutation-based upscaler to ensure high efficiency while establishing clear segmentation boundaries with 2) multi-head self/cross-gating layers to emphasize particular semantics meanwhile maintaining the divergence between token embeddings. Besides, we collect 3) the first open-sourced intraoral image dataset IO150K, which comprises over 150k intraoral photos, and all photos are annotated by orthodontists using a human-machine hybrid algorithm. Experiments on IO150K demonstrate that our TeethSEG outperforms the state-of-the-art segmentation models on dental image segmentation.
- Abstract(参考訳): 2次元画像における歯の局在化、セグメンテーション、ラベル付けは、歯科診断、治療計画、口腔健康に関する人口ベース研究を強化するために、現代の歯科医療において大きな可能性を秘めている。
しかし、一般的なインスタンスセグメンテーションフレームワークは、非能率である。
1)歯の形状の微妙な違い(例えば、上顎第一前臼歯と第二前臼歯)
2) 被検者における歯の位置と形状の変化
3) 歯列の異常の有無(eg, caries, edentulism)
これらの問題に対処するために,階層化マルチスケールアグリゲーション(MSA)ブロックと人為的優先知識(APK)レイヤからなる,TeethSEGというViTベースのフレームワークを提案する。
具体的には2つのモジュールを構成するために
1) 明確なセグメンテーション境界を確立しつつ高い効率を確保するための一意な置換に基づくアップスケーラ
2) トークンの埋め込みのばらつきを保ちながら,特定の意味を強調するマルチヘッド・セルフ/クロスゲート層。
また、収集も行う。
3) 口腔内画像データセットIO150Kは,150万枚以上の口腔内写真からなり,すべての写真はヒトと機械のハイブリッドアルゴリズムを用いて矯正医によって注釈付けされている。
IO150Kを用いた実験により, 歯質SEGは, 歯科画像のセグメンテーションにおける最先端のセグメンテーションモデルよりも優れていることが示された。
関連論文リスト
- Multiclass Segmentation using Teeth Attention Modules for Dental X-ray
Images [8.041659727964305]
本研究では,スイニングトランスフォーマーとTABを用いたM-Net様構造を取り入れた新しい歯のセグメンテーションモデルを提案する。
提案したTABは、歯の複雑な構造に特化するユニークな注意機構を利用する。
提案アーキテクチャは,各歯とその周辺構造を正確に定義し,局所的およびグローバルな文脈情報を効果的に取得する。
論文 参考訳(メタデータ) (2023-11-07T06:20:34Z) - 3D Structure-guided Network for Tooth Alignment in 2D Photograph [51.9046939030457]
矯正治療に先立って歯列が整列した2次元写真は, 効果的な歯科医療コミュニケーションに不可欠である。
本稿では2次元画像空間内の歯を入力として2次元写真を取り,アライメントする3次元構造誘導歯列ネットワークを提案する。
本研究は, 各種顔写真におけるネットワークの評価を行い, 歯科矯正産業における特筆すべき性能と高い適用性を示した。
論文 参考訳(メタデータ) (2023-10-17T09:44:30Z) - Radious: Unveiling the Enigma of Dental Radiology with BEIT Adaptor and
Mask2Former in Semantic Segmentation [0.0]
BEITアダプタとMask2Formerを用いたセマンティックセグメンテーションアルゴリズムを開発した。
我々は,Deeplabv3とSegformerという2つの画像セグメント化アルゴリズムと比較した。
その結果,Radiousは,Deeplabv3+とSegformerのmIoUスコアを9%,Segformerで33%増加させることで,これらのアルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2023-05-10T15:15:09Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
医用画像セグメンテーションのための階層化グループ理論を用いた半教師付きコントラスト学習フレームワークARCOを提案する。
まず、分散還元推定の概念を用いてARCOを構築することを提案し、特定の分散還元技術が画素/ボクセルレベルのセグメンテーションタスクにおいて特に有用であることを示す。
5つの2D/3D医療データセットと3つのセマンティックセグメンテーションデータセットのラベル設定が異なる8つのベンチマークで、我々のアプローチを実験的に検証する。
論文 参考訳(メタデータ) (2023-02-03T13:50:25Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
半教師付きバイオメディカルイメージセグメンテーションのための自己教師付き補正学習パラダイムを提案する。
共有エンコーダと2つの独立デコーダを含むデュアルタスクネットワークを設計する。
異なるタスクのための3つの医用画像分割データセットの実験により,本手法の優れた性能が示された。
論文 参考訳(メタデータ) (2023-01-12T08:19:46Z) - Semantic decomposition Network with Contrastive and Structural
Constraints for Dental Plaque Segmentation [33.40662847763453]
デンタルプラークのセグメンテーションは、セマンティックブルーの領域で歯とデンタルプラークを識別する必要がある課題である。
本稿では, 歯と歯冠のセグメンテーションに対処するため, 2つの単一タスク枝を導入した意味分解ネットワーク(SDNet)を提案する。
論文 参考訳(メタデータ) (2022-08-12T14:10:29Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - OdontoAI: A human-in-the-loop labeled data set and an online platform to
boost research on dental panoramic radiographs [53.67409169790872]
本研究では, 歯科用パノラマX線画像の公開データセットの構築について述べる。
我々はHuman-in-the-loop(HITL)の概念の恩恵を受け、ラベリング手順を高速化する。
その結果,HITLによるラベル付け時間短縮率は51%であり,連続作業時間390時間以上節約できた。
論文 参考訳(メタデータ) (2022-03-29T18:57:23Z) - Developing a Novel Approach for Periapical Dental Radiographs
Segmentation [1.332560004325655]
提案するアルゴリズムは2段階で構成され,第1段階は前処理である。
このアルゴリズムの第2部と第1部は回転度を計算し、歯の隔離に積分投影法を用いる。
実験結果から, このアルゴリズムは頑健であり, 精度が高いことがわかった。
論文 参考訳(メタデータ) (2021-11-13T17:25:35Z) - Two-Stage Mesh Deep Learning for Automated Tooth Segmentation and
Landmark Localization on 3D Intraoral Scans [56.55092443401416]
TS-MDLの最初の段階では、mphiMeshSegNetは0.953pm0.076$で平均Dice類似係数(DSC)に達した。
PointNet-Reg は平均絶対誤差 (MAE) が 0.623pm0.718, mm$ であり、ランドマーク検出の他のネットワークよりも優れている。
論文 参考訳(メタデータ) (2021-09-24T13:00:26Z) - Pose-Aware Instance Segmentation Framework from Cone Beam CT Images for
Tooth Segmentation [9.880428545498662]
コーンビームCT(CBCT)画像からの個々の歯のセグメンテーションは矯正構造の解剖学的理解に不可欠である。
CBCT画像中の重金属人工物の存在は、個々の歯の正確なセグメンテーションを妨げる。
本稿では,金属製品に対して堅牢なインスタンスセグメンテーションフレームワークを活用するために,ピクセルワイズラベリングのためのニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2020-02-06T07:57:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。