Teeth-SEG: An Efficient Instance Segmentation Framework for Orthodontic Treatment based on Anthropic Prior Knowledge
- URL: http://arxiv.org/abs/2404.01013v1
- Date: Mon, 1 Apr 2024 09:34:51 GMT
- Title: Teeth-SEG: An Efficient Instance Segmentation Framework for Orthodontic Treatment based on Anthropic Prior Knowledge
- Authors: Bo Zou, Shaofeng Wang, Hao Liu, Gaoyue Sun, Yajie Wang, FeiFei Zuo, Chengbin Quan, Youjian Zhao,
- Abstract summary: We propose a ViT-based framework named TeethSEG, which consists of stacked Multi-Scale Aggregation (MSA) blocks and an Anthropic Prior Knowledge (APK) layer.
To address these problems, we propose a ViT-based framework named TeethSEG, which consists of stacked Multi-Scale Aggregation (MSA) blocks and an Anthropic Prior Knowledge (APK) layer.
Experiments on IO150K demonstrate that our TeethSEG outperforms the state-of-the-art segmentation models on dental image segmentation.
- Score: 8.87268139736394
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Teeth localization, segmentation, and labeling in 2D images have great potential in modern dentistry to enhance dental diagnostics, treatment planning, and population-based studies on oral health. However, general instance segmentation frameworks are incompetent due to 1) the subtle differences between some teeth' shapes (e.g., maxillary first premolar and second premolar), 2) the teeth's position and shape variation across subjects, and 3) the presence of abnormalities in the dentition (e.g., caries and edentulism). To address these problems, we propose a ViT-based framework named TeethSEG, which consists of stacked Multi-Scale Aggregation (MSA) blocks and an Anthropic Prior Knowledge (APK) layer. Specifically, to compose the two modules, we design 1) a unique permutation-based upscaler to ensure high efficiency while establishing clear segmentation boundaries with 2) multi-head self/cross-gating layers to emphasize particular semantics meanwhile maintaining the divergence between token embeddings. Besides, we collect 3) the first open-sourced intraoral image dataset IO150K, which comprises over 150k intraoral photos, and all photos are annotated by orthodontists using a human-machine hybrid algorithm. Experiments on IO150K demonstrate that our TeethSEG outperforms the state-of-the-art segmentation models on dental image segmentation.
Related papers
- Multiclass Segmentation using Teeth Attention Modules for Dental X-ray
Images [8.041659727964305]
We propose a novel teeth segmentation model incorporating an M-Net-like structure with Swin Transformers and TAB.
The proposed TAB utilizes a unique attention mechanism that focuses specifically on the complex structures of teeth.
The proposed architecture effectively captures local and global contextual information, accurately defining each tooth and its surrounding structures.
arXiv Detail & Related papers (2023-11-07T06:20:34Z) - 3D Structure-guided Network for Tooth Alignment in 2D Photograph [47.51314162367702]
A 2D photograph depicting aligned teeth prior to orthodontic treatment is crucial for effective dentist-patient communication.
We propose a 3D structure-guided tooth alignment network that takes 2D photographs as input and aligns the teeth within the 2D image space.
We evaluate our network on various facial photographs, demonstrating its exceptional performance and strong applicability within the orthodontic industry.
arXiv Detail & Related papers (2023-10-17T09:44:30Z) - Radious: Unveiling the Enigma of Dental Radiology with BEIT Adaptor and
Mask2Former in Semantic Segmentation [0.0]
We developed a semantic segmentation algorithm based on BEIT adaptor and Mask2Former to detect and identify teeth, roots, and multiple dental diseases.
We compared the result of our algorithm to two state-of-the-art algorithms in image segmentation named: Deeplabv3 and Segformer.
We discovered that Radious outperformed those algorithms by increasing the mIoU scores by 9% and 33% in Deeplabv3+ and Segformer, respectively.
arXiv Detail & Related papers (2023-05-10T15:15:09Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
We propose ARCO, a semi-supervised contrastive learning framework with stratified group theory for medical image segmentation.
We first propose building ARCO through the concept of variance-reduced estimation and show that certain variance-reduction techniques are particularly beneficial in pixel/voxel-level segmentation tasks.
We experimentally validate our approaches on eight benchmarks, i.e., five 2D/3D medical and three semantic segmentation datasets, with different label settings.
arXiv Detail & Related papers (2023-02-03T13:50:25Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - Semantic decomposition Network with Contrastive and Structural
Constraints for Dental Plaque Segmentation [33.40662847763453]
Dental plaque segmentation is a challenging task that requires identifying teeth and dental plaque subjected to semanticblur regions.
We propose a semantic decomposition network (SDNet) that introduces two single-task branches to address the segmentation of teeth and dental plaque.
arXiv Detail & Related papers (2022-08-12T14:10:29Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - OdontoAI: A human-in-the-loop labeled data set and an online platform to
boost research on dental panoramic radiographs [53.67409169790872]
This study addresses the construction of a public data set of dental panoramic radiographs.
We benefit from the human-in-the-loop (HITL) concept to expedite the labeling procedure.
Results demonstrate a 51% labeling time reduction using HITL, saving us more than 390 continuous working hours.
arXiv Detail & Related papers (2022-03-29T18:57:23Z) - Developing a Novel Approach for Periapical Dental Radiographs
Segmentation [1.332560004325655]
The proposed algorithm is made of two stages. The first stage is pre-processing.
The second and main part of this algorithm calculated rotation degree and uses the integral projection method for tooth isolation.
Experimental results show that this algorithm is robust and achieves high accuracy.
arXiv Detail & Related papers (2021-11-13T17:25:35Z) - Two-Stage Mesh Deep Learning for Automated Tooth Segmentation and
Landmark Localization on 3D Intraoral Scans [56.55092443401416]
emphiMeshSegNet in the first stage of TS-MDL reached an averaged Dice similarity coefficient (DSC) at 0.953pm0.076$, significantly outperforming the original MeshSegNet.
PointNet-Reg achieved a mean absolute error (MAE) of $0.623pm0.718, mm$ in distances between the prediction and ground truth for $44$ landmarks, which is superior compared with other networks for landmark detection.
arXiv Detail & Related papers (2021-09-24T13:00:26Z) - Pose-Aware Instance Segmentation Framework from Cone Beam CT Images for
Tooth Segmentation [9.880428545498662]
Individual tooth segmentation from cone beam computed tomography (CBCT) images is essential for an anatomical understanding of orthodontic structures.
The presence of severe metal artifacts in CBCT images hinders the accurate segmentation of each individual tooth.
We propose a neural network for pixel-wise labeling to exploit an instance segmentation framework that is robust to metal artifacts.
arXiv Detail & Related papers (2020-02-06T07:57:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.