Roadside Monocular 3D Detection via 2D Detection Prompting
- URL: http://arxiv.org/abs/2404.01064v2
- Date: Thu, 4 Apr 2024 09:48:30 GMT
- Title: Roadside Monocular 3D Detection via 2D Detection Prompting
- Authors: Yechi Ma, Shuoquan Wei, Churun Zhang, Wei Hua, Yanan Li, Shu Kong,
- Abstract summary: We present a novel and simple method by prompting the 3D detector using 2D detections.
Our method builds on a key insight that, compared with 3D detectors, a 2D detector is much easier to train and performs significantly better w.r.t detections on the 2D image plane.
- Score: 11.511202614683388
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The problem of roadside monocular 3D detection requires detecting objects of interested classes in a 2D RGB frame and predicting their 3D information such as locations in bird's-eye-view (BEV). It has broad applications in traffic control, vehicle-vehicle communication, and vehicle-infrastructure cooperative perception. To approach this problem, we present a novel and simple method by prompting the 3D detector using 2D detections. Our method builds on a key insight that, compared with 3D detectors, a 2D detector is much easier to train and performs significantly better w.r.t detections on the 2D image plane. That said, one can exploit 2D detections of a well-trained 2D detector as prompts to a 3D detector, being trained in a way of inflating such 2D detections to 3D towards 3D detection. To construct better prompts using the 2D detector, we explore three techniques: (a) concatenating both 2D and 3D detectors' features, (b) attentively fusing 2D and 3D detectors' features, and (c) encoding predicted 2D boxes x, y, width, height, label and attentively fusing such with the 3D detector's features. Surprisingly, the third performs the best. Moreover, we present a yaw tuning tactic and a class-grouping strategy that merges classes based on their functionality; these techniques improve 3D detection performance further. Comprehensive ablation studies and extensive experiments demonstrate that our method resoundingly outperforms prior works, achieving the state-of-the-art on two large-scale roadside 3D detection benchmarks.
Related papers
- Training an Open-Vocabulary Monocular 3D Object Detection Model without 3D Data [57.53523870705433]
We propose a novel open-vocabulary monocular 3D object detection framework, dubbed OVM3D-Det.
OVM3D-Det does not require high-precision LiDAR or 3D sensor data for either input or generating 3D bounding boxes.
It employs open-vocabulary 2D models and pseudo-LiDAR to automatically label 3D objects in RGB images, fostering the learning of open-vocabulary monocular 3D detectors.
arXiv Detail & Related papers (2024-11-23T21:37:21Z) - ALPI: Auto-Labeller with Proxy Injection for 3D Object Detection using 2D Labels Only [5.699475977818167]
3D object detection plays a crucial role in various applications such as autonomous vehicles, robotics and augmented reality.
We propose a weakly supervised 3D annotator that relies solely on 2D bounding box annotations from images, along with size priors.
arXiv Detail & Related papers (2024-07-24T11:58:31Z) - Enhancing 3D Object Detection with 2D Detection-Guided Query Anchors [6.3557174349423455]
We present a novel query generating approach termed QAF2D, which infers 3D query anchors from 2D detection results.
The largest improvement that QAF2D can bring about on the nuScenes validation subset is $2.3%$ NDS and $2.7%$ mAP.
arXiv Detail & Related papers (2024-03-10T04:38:27Z) - Towards 3D Object Detection with 2D Supervision [13.444432119639822]
We introduce a hybrid training framework, enabling us to learn a visual 3D object detector with massive 2D labels.
We propose a temporal 2D transformation to bridge the 3D predictions with temporal 2D labels.
Experiments conducted on the nuScenes dataset show strong results (nearly 90% of its fully-supervised performance) with only 25% 3D annotations.
arXiv Detail & Related papers (2022-11-15T16:40:11Z) - Homography Loss for Monocular 3D Object Detection [54.04870007473932]
A differentiable loss function, termed as Homography Loss, is proposed to achieve the goal, which exploits both 2D and 3D information.
Our method yields the best performance compared with the other state-of-the-arts by a large margin on KITTI 3D datasets.
arXiv Detail & Related papers (2022-04-02T03:48:03Z) - FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle
Detection [81.79171905308827]
We propose frustum-aware geometric reasoning (FGR) to detect vehicles in point clouds without any 3D annotations.
Our method consists of two stages: coarse 3D segmentation and 3D bounding box estimation.
It is able to accurately detect objects in 3D space with only 2D bounding boxes and sparse point clouds.
arXiv Detail & Related papers (2021-05-17T07:29:55Z) - FCOS3D: Fully Convolutional One-Stage Monocular 3D Object Detection [78.00922683083776]
It is non-trivial to make a general adapted 2D detector work in this 3D task.
In this technical report, we study this problem with a practice built on fully convolutional single-stage detector.
Our solution achieves 1st place out of all the vision-only methods in the nuScenes 3D detection challenge of NeurIPS 2020.
arXiv Detail & Related papers (2021-04-22T09:35:35Z) - 3D-to-2D Distillation for Indoor Scene Parsing [78.36781565047656]
We present a new approach that enables us to leverage 3D features extracted from large-scale 3D data repository to enhance 2D features extracted from RGB images.
First, we distill 3D knowledge from a pretrained 3D network to supervise a 2D network to learn simulated 3D features from 2D features during the training.
Second, we design a two-stage dimension normalization scheme to calibrate the 2D and 3D features for better integration.
Third, we design a semantic-aware adversarial training model to extend our framework for training with unpaired 3D data.
arXiv Detail & Related papers (2021-04-06T02:22:24Z) - DSGN: Deep Stereo Geometry Network for 3D Object Detection [79.16397166985706]
There is a large performance gap between image-based and LiDAR-based 3D object detectors.
Our method, called Deep Stereo Geometry Network (DSGN), significantly reduces this gap.
For the first time, we provide a simple and effective one-stage stereo-based 3D detection pipeline.
arXiv Detail & Related papers (2020-01-10T11:44:37Z) - RTM3D: Real-time Monocular 3D Detection from Object Keypoints for
Autonomous Driving [26.216609821525676]
Most successful 3D detectors take the projection constraint from the 3D bounding box to the 2D box as an important component.
Our method predicts the nine perspective keypoints of a 3D bounding box in image space, and then utilize the geometric relationship of 3D and 2D perspectives to recover the dimension, location, and orientation in 3D space.
Our method is the first real-time system for monocular image 3D detection while achieves state-of-the-art performance on the KITTI benchmark.
arXiv Detail & Related papers (2020-01-10T08:29:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.