Diffusion based Zero-shot Medical Image-to-Image Translation for Cross Modality Segmentation
- URL: http://arxiv.org/abs/2404.01102v2
- Date: Tue, 9 Apr 2024 19:26:36 GMT
- Title: Diffusion based Zero-shot Medical Image-to-Image Translation for Cross Modality Segmentation
- Authors: Zihao Wang, Yingyu Yang, Yuzhou Chen, Tingting Yuan, Maxime Sermesant, Herve Delingette, Ona Wu,
- Abstract summary: Cross-modality image segmentation aims to segment the target modalities using a method designed in the source modality.
Deep generative models can translate the target modality images into the source modality, thus enabling cross-modality segmentation.
- Score: 18.895926089773177
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cross-modality image segmentation aims to segment the target modalities using a method designed in the source modality. Deep generative models can translate the target modality images into the source modality, thus enabling cross-modality segmentation. However, a vast body of existing cross-modality image translation methods relies on supervised learning. In this work, we aim to address the challenge of zero-shot learning-based image translation tasks (extreme scenarios in the target modality is unseen in the training phase). To leverage generative learning for zero-shot cross-modality image segmentation, we propose a novel unsupervised image translation method. The framework learns to translate the unseen source image to the target modality for image segmentation by leveraging the inherent statistical consistency between different modalities for diffusion guidance. Our framework captures identical cross-modality features in the statistical domain, offering diffusion guidance without relying on direct mappings between the source and target domains. This advantage allows our method to adapt to changing source domains without the need for retraining, making it highly practical when sufficient labeled source domain data is not available. The proposed framework is validated in zero-shot cross-modality image segmentation tasks through empirical comparisons with influential generative models, including adversarial-based and diffusion-based models.
Related papers
- Adapt Anything: Tailor Any Image Classifiers across Domains And
Categories Using Text-to-Image Diffusion Models [82.95591765009105]
We aim to study if a modern text-to-image diffusion model can tailor any task-adaptive image classifier across domains and categories.
We utilize only one off-the-shelf text-to-image model to synthesize images with category labels derived from the corresponding text prompts.
arXiv Detail & Related papers (2023-10-25T11:58:14Z) - A2V: A Semi-Supervised Domain Adaptation Framework for Brain Vessel Segmentation via Two-Phase Training Angiography-to-Venography Translation [4.452428104996953]
We present a semi-supervised domain adaptation framework for brain vessel segmentation from different image modalities.
By relying on annotated angiographies and a limited number of annotated venographies, our framework accomplishes image-to-image translation and semantic segmentation.
arXiv Detail & Related papers (2023-09-12T09:12:37Z) - Improving Diversity in Zero-Shot GAN Adaptation with Semantic Variations [61.132408427908175]
zero-shot GAN adaptation aims to reuse well-trained generators to synthesize images of an unseen target domain.
With only a single representative text feature instead of real images, the synthesized images gradually lose diversity.
We propose a novel method to find semantic variations of the target text in the CLIP space.
arXiv Detail & Related papers (2023-08-21T08:12:28Z) - Improving Diffusion-based Image Translation using Asymmetric Gradient
Guidance [51.188396199083336]
We present an approach that guides the reverse process of diffusion sampling by applying asymmetric gradient guidance.
Our model's adaptability allows it to be implemented with both image-fusion and latent-dif models.
Experiments show that our method outperforms various state-of-the-art models in image translation tasks.
arXiv Detail & Related papers (2023-06-07T12:56:56Z) - Conditional Score Guidance for Text-Driven Image-to-Image Translation [52.73564644268749]
We present a novel algorithm for text-driven image-to-image translation based on a pretrained text-to-image diffusion model.
Our method aims to generate a target image by selectively editing the regions of interest in a source image.
arXiv Detail & Related papers (2023-05-29T10:48:34Z) - Zero-shot-Learning Cross-Modality Data Translation Through Mutual
Information Guided Stochastic Diffusion [5.795193288204816]
Cross-modality data translation has attracted great interest in image computing.
This paper proposes a new unsupervised zero-shot-learning method named Mutual Information Diffusion guided cross-modality data translation Model (MIDiffusion)
We empirically show the advanced performance of MIDiffusion in comparison with an influential group of generative models.
arXiv Detail & Related papers (2023-01-31T16:24:34Z) - Unsupervised Domain Adaptation for Semantic Segmentation using One-shot
Image-to-Image Translation via Latent Representation Mixing [9.118706387430883]
We propose a new unsupervised domain adaptation method for the semantic segmentation of very high resolution images.
An image-to-image translation paradigm is proposed, based on an encoder-decoder principle where latent content representations are mixed across domains.
Cross-city comparative experiments have shown that the proposed method outperforms state-of-the-art domain adaptation methods.
arXiv Detail & Related papers (2022-12-07T18:16:17Z) - Diffusion-based Image Translation using Disentangled Style and Content
Representation [51.188396199083336]
Diffusion-based image translation guided by semantic texts or a single target image has enabled flexible style transfer.
It is often difficult to maintain the original content of the image during the reverse diffusion.
We present a novel diffusion-based unsupervised image translation method using disentangled style and content representation.
Our experimental results show that the proposed method outperforms state-of-the-art baseline models in both text-guided and image-guided translation tasks.
arXiv Detail & Related papers (2022-09-30T06:44:37Z) - Global and Local Alignment Networks for Unpaired Image-to-Image
Translation [170.08142745705575]
The goal of unpaired image-to-image translation is to produce an output image reflecting the target domain's style.
Due to the lack of attention to the content change in existing methods, semantic information from source images suffers from degradation during translation.
We introduce a novel approach, Global and Local Alignment Networks (GLA-Net)
Our method effectively generates sharper and more realistic images than existing approaches.
arXiv Detail & Related papers (2021-11-19T18:01:54Z) - Label-Driven Reconstruction for Domain Adaptation in Semantic
Segmentation [43.09068177612067]
Unsupervised domain adaptation enables to alleviate the need for pixel-wise annotation in the semantic segmentation.
One of the most common strategies is to translate images from the source domain to the target domain and then align their marginal distributions in the feature space using adversarial learning.
Here, we present an innovative framework, designed to mitigate the image translation bias and align cross-domain features with the same category.
arXiv Detail & Related papers (2020-03-10T10:06:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.