A2V: A Semi-Supervised Domain Adaptation Framework for Brain Vessel Segmentation via Two-Phase Training Angiography-to-Venography Translation
- URL: http://arxiv.org/abs/2309.06075v2
- Date: Wed, 27 Mar 2024 09:51:15 GMT
- Title: A2V: A Semi-Supervised Domain Adaptation Framework for Brain Vessel Segmentation via Two-Phase Training Angiography-to-Venography Translation
- Authors: Francesco Galati, Daniele Falcetta, Rosa Cortese, Barbara Casolla, Ferran Prados, Ninon Burgos, Maria A. Zuluaga,
- Abstract summary: We present a semi-supervised domain adaptation framework for brain vessel segmentation from different image modalities.
By relying on annotated angiographies and a limited number of annotated venographies, our framework accomplishes image-to-image translation and semantic segmentation.
- Score: 4.452428104996953
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a semi-supervised domain adaptation framework for brain vessel segmentation from different image modalities. Existing state-of-the-art methods focus on a single modality, despite the wide range of available cerebrovascular imaging techniques. This can lead to significant distribution shifts that negatively impact the generalization across modalities. By relying on annotated angiographies and a limited number of annotated venographies, our framework accomplishes image-to-image translation and semantic segmentation, leveraging a disentangled and semantically rich latent space to represent heterogeneous data and perform image-level adaptation from source to target domains. Moreover, we reduce the typical complexity of cycle-based architectures and minimize the use of adversarial training, which allows us to build an efficient and intuitive model with stable training. We evaluate our method on magnetic resonance angiographies and venographies. While achieving state-of-the-art performance in the source domain, our method attains a Dice score coefficient in the target domain that is only 8.9% lower, highlighting its promising potential for robust cerebrovascular image segmentation across different modalities.
Related papers
- Language Guided Domain Generalized Medical Image Segmentation [68.93124785575739]
Single source domain generalization holds promise for more reliable and consistent image segmentation across real-world clinical settings.
We propose an approach that explicitly leverages textual information by incorporating a contrastive learning mechanism guided by the text encoder features.
Our approach achieves favorable performance against existing methods in literature.
arXiv Detail & Related papers (2024-04-01T17:48:15Z) - Unsupervised Domain Transfer with Conditional Invertible Neural Networks [83.90291882730925]
We propose a domain transfer approach based on conditional invertible neural networks (cINNs)
Our method inherently guarantees cycle consistency through its invertible architecture, and network training can efficiently be conducted with maximum likelihood.
Our method enables the generation of realistic spectral data and outperforms the state of the art on two downstream classification tasks.
arXiv Detail & Related papers (2023-03-17T18:00:27Z) - ScoreNet: Learning Non-Uniform Attention and Augmentation for
Transformer-Based Histopathological Image Classification [11.680355561258427]
High-resolution images hinder progress in digital pathology.
patch-based processing often incorporates multiple instance learning (MIL) to aggregate local patch-level representations yielding image-level prediction.
This paper proposes a transformer-based architecture specifically tailored for histological image classification.
It combines fine-grained local attention with a coarse global attention mechanism to learn meaningful representations of high-resolution images at an efficient computational cost.
arXiv Detail & Related papers (2022-02-15T16:55:09Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
In this paper, we propose a novel Bidirectional Global-to-Local (BiGL) adaptation framework under a UDA scheme.
Specifically, a bidirectional image synthesis and segmentation module is proposed to segment the brain tumor.
The proposed method outperforms several state-of-the-art unsupervised domain adaptation methods by a large margin.
arXiv Detail & Related papers (2021-05-17T10:11:45Z) - Self-Attentive Spatial Adaptive Normalization for Cross-Modality Domain
Adaptation [9.659642285903418]
Cross-modality synthesis of medical images to reduce the costly annotation burden by radiologists.
We present a novel approach for image-to-image translation in medical images, capable of supervised or unsupervised (unpaired image data) setups.
arXiv Detail & Related papers (2021-03-05T16:22:31Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z) - Unsupervised Bidirectional Cross-Modality Adaptation via Deeply
Synergistic Image and Feature Alignment for Medical Image Segmentation [73.84166499988443]
We present a novel unsupervised domain adaptation framework, named as Synergistic Image and Feature Alignment (SIFA)
Our proposed SIFA conducts synergistic alignment of domains from both image and feature perspectives.
Experimental results on two different tasks demonstrate that our SIFA method is effective in improving segmentation performance on unlabeled target images.
arXiv Detail & Related papers (2020-02-06T13:49:47Z) - Domain Adaptive Medical Image Segmentation via Adversarial Learning of
Disease-Specific Spatial Patterns [6.298270929323396]
We propose an unsupervised domain adaptation framework for boosting image segmentation performance across multiple domains.
We enforce architectures to be adaptive to new data by rejecting improbable segmentation patterns and implicitly learning through semantic and boundary information.
We demonstrate that recalibrating the deep networks on a few unlabeled images from the target domain improves the segmentation accuracy significantly.
arXiv Detail & Related papers (2020-01-25T13:48:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.