Nearly-tight Approximation Guarantees for the Improving Multi-Armed Bandits Problem
- URL: http://arxiv.org/abs/2404.01198v1
- Date: Mon, 1 Apr 2024 15:55:45 GMT
- Title: Nearly-tight Approximation Guarantees for the Improving Multi-Armed Bandits Problem
- Authors: Avrim Blum, Kavya Ravichandran,
- Abstract summary: An instance of this problem has $k$ arms, each of whose reward function is a concave and increasing function of the number of times that arm has been pulled so far.
We show that for any randomized online algorithm, there exists an instance on which it must suffer at least an $Omega(sqrtk)$ approximation factor relative to the optimal reward.
We then show how to remove this assumption at the cost of an extra $O(sqrtk log k)$ approximation factor, achieving an overall $O(sqrtk
- Score: 10.994427113326996
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We give nearly-tight upper and lower bounds for the improving multi-armed bandits problem. An instance of this problem has $k$ arms, each of whose reward function is a concave and increasing function of the number of times that arm has been pulled so far. We show that for any randomized online algorithm, there exists an instance on which it must suffer at least an $\Omega(\sqrt{k})$ approximation factor relative to the optimal reward. We then provide a randomized online algorithm that guarantees an $O(\sqrt{k})$ approximation factor, if it is told the maximum reward achievable by the optimal arm in advance. We then show how to remove this assumption at the cost of an extra $O(\log k)$ approximation factor, achieving an overall $O(\sqrt{k} \log k)$ approximation relative to optimal.
Related papers
- A General Framework for Clustering and Distribution Matching with Bandit Feedback [81.50716021326194]
We develop a general framework for clustering and distribution matching problems with bandit feedback.
We derive a non-asymptotic lower bound on the average number of arm pulls for any online algorithm with an error probability not exceeding $delta$.
arXiv Detail & Related papers (2024-09-08T12:19:12Z) - Optimal Top-Two Method for Best Arm Identification and Fluid Analysis [15.353009236788262]
We propose an optimal top-2 type algorithm for the best arm identification problem.
We show that the proposed algorithm is optimal as $delta rightarrow 0$.
arXiv Detail & Related papers (2024-03-14T06:14:07Z) - Combinatorial Stochastic-Greedy Bandit [79.1700188160944]
We propose a novelgreedy bandit (SGB) algorithm for multi-armed bandit problems when no extra information other than the joint reward of the selected set of $n$ arms at each time $tin [T]$ is observed.
SGB adopts an optimized-explore-then-commit approach and is specifically designed for scenarios with a large set of base arms.
arXiv Detail & Related papers (2023-12-13T11:08:25Z) - On the complexity of All $\varepsilon$-Best Arms Identification [2.1485350418225244]
We consider the problem of identifying all the $varepsilon$-optimal arms in a finite multi-armed bandit with Gaussian rewards.
We propose a Track-and-Stop algorithm that identifies the set of $varepsilon$-good arms w.h.p and enjoys optimality (when $delta$ goes to zero) in terms of the expected sample complexity.
arXiv Detail & Related papers (2022-02-13T10:54:52Z) - Bandits with many optimal arms [68.17472536610859]
We write $p*$ for the proportion of optimal arms and $Delta$ for the minimal mean-gap between optimal and sub-optimal arms.
We characterize the optimal learning rates both in the cumulative regret setting, and in the best-arm identification setting.
arXiv Detail & Related papers (2021-03-23T11:02:31Z) - Top-$k$ eXtreme Contextual Bandits with Arm Hierarchy [71.17938026619068]
We study the top-$k$ extreme contextual bandits problem, where the total number of arms can be enormous.
We first propose an algorithm for the non-extreme realizable setting, utilizing the Inverse Gap Weighting strategy.
We show that our algorithm has a regret guarantee of $O(ksqrt(A-k+1)T log (|mathcalF|T))$.
arXiv Detail & Related papers (2021-02-15T19:10:52Z) - Near-Optimal Regret Bounds for Contextual Combinatorial Semi-Bandits
with Linear Payoff Functions [53.77572276969548]
We show that the C$2$UCB algorithm has the optimal regret bound $tildeO(dsqrtkT + dk)$ for the partition matroid constraints.
For general constraints, we propose an algorithm that modifies the reward estimates of arms in the C$2$UCB algorithm.
arXiv Detail & Related papers (2021-01-20T04:29:18Z) - Lenient Regret for Multi-Armed Bandits [72.56064196252498]
We consider the Multi-Armed Bandit (MAB) problem, where an agent sequentially chooses actions and observes rewards for the actions it took.
While the majority of algorithms try to minimize the regret, i.e., the cumulative difference between the reward of the best action and the agent's action, this criterion might lead to undesirable results.
We suggest a new, more lenient, regret criterion that ignores suboptimality gaps smaller than some $epsilon$.
arXiv Detail & Related papers (2020-08-10T08:30:52Z) - Blocking Bandits [33.14975454724348]
We consider a novel multi-armed bandit setting, where playing an arm makes it unavailable for a fixed number of time slots thereafter.
We show that with prior knowledge of the rewards and delays of all the arms, the problem of optimizing cumulative reward does not admit any pseudo-polynomial time algorithm.
We design a UCB based algorithm which is shown to have $c log T + o(log T)$ cumulative regret against the greedy algorithm.
arXiv Detail & Related papers (2019-07-27T20:42:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.