論文の概要: Novel Node Category Detection Under Subpopulation Shift
- arxiv url: http://arxiv.org/abs/2404.01216v1
- Date: Mon, 1 Apr 2024 16:16:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-03 21:46:03.142754
- Title: Novel Node Category Detection Under Subpopulation Shift
- Title(参考訳): サブポピュレーションシフトによる新しいノードカテゴリー検出
- Authors: Hsing-Huan Chung, Shravan Chaudhari, Yoav Wald, Xing Han, Joydeep Ghosh,
- Abstract要約: 本稿では,Recall-Constrained Optimization with Selective Link Prediction (RECO-SLIP)を提案する。
ReCO-SLIPは、リコール制約付き学習フレームワークとサンプル効率のよいリンク予測機構を統合することにより、サブポピュレーションシフトに対するレジリエンスの2つの課題と、グラフ構造を効果的に活用する。
- 参考スコア(独自算出の注目度): 10.056931835585189
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In real-world graph data, distribution shifts can manifest in various ways, such as the emergence of new categories and changes in the relative proportions of existing categories. It is often important to detect nodes of novel categories under such distribution shifts for safety or insight discovery purposes. We introduce a new approach, Recall-Constrained Optimization with Selective Link Prediction (RECO-SLIP), to detect nodes belonging to novel categories in attributed graphs under subpopulation shifts. By integrating a recall-constrained learning framework with a sample-efficient link prediction mechanism, RECO-SLIP addresses the dual challenges of resilience against subpopulation shifts and the effective exploitation of graph structure. Our extensive empirical evaluation across multiple graph datasets demonstrates the superior performance of RECO-SLIP over existing methods.
- Abstract(参考訳): 実世界のグラフデータでは、新しいカテゴリの出現や既存のカテゴリの相対比の変化など、分布シフトが様々な方法で現れる。
安全性や洞察発見の目的のために、そのような分布シフトの下で、新しいカテゴリのノードを検出することがしばしば重要である。
本稿では,Recall-Constrained Optimization with Selective Link Prediction (RECO-SLIP)を提案する。
ReCO-SLIPは、リコール制約付き学習フレームワークとサンプル効率のよいリンク予測機構を統合することにより、サブポピュレーションシフトに対するレジリエンスの2つの課題と、グラフ構造を効果的に活用する。
複数のグラフデータセットにまたがる広範な経験的評価は,既存の手法よりもRECO-SLIPの優れた性能を示す。
関連論文リスト
- AdaRC: Mitigating Graph Structure Shifts during Test-Time [66.40525136929398]
テスト時間適応(TTA)は、ソースドメインに再アクセスすることなく、トレーニング済みのモデルをターゲットドメインに適応できる能力によって注目を集めている。
AdaRCは,グラフの構造シフトに効果的かつ効率的な適応を意図した,革新的なフレームワークである。
論文 参考訳(メタデータ) (2024-10-09T15:15:40Z) - Graph Out-of-Distribution Generalization via Causal Intervention [69.70137479660113]
本稿では,ノードレベルの分散シフトの下で頑健なグラフニューラルネットワーク(GNN)をトレーニングするための,概念的に単純だが原則化されたアプローチを提案する。
本手法は,環境推定器と熟練GNN予測器を協調する因果推論に基づく新たな学習目標を提案する。
本モデルでは,様々な分散シフトによる一般化を効果的に向上し,グラフOOD一般化ベンチマーク上での最先端の精度を最大27.4%向上させることができる。
論文 参考訳(メタデータ) (2024-02-18T07:49:22Z) - Structural Re-weighting Improves Graph Domain Adaptation [13.019371337183202]
本研究は,グラフ構造やノード属性による分散シフトの影響について検討する。
構造再重み付け(StruRW)と呼ばれる新しい手法がこの問題に対処するために提案され、合成グラフ、ベンチマークデータセット4つ、高エネルギー物理学における新しい応用についてテストされている。
論文 参考訳(メタデータ) (2023-06-05T20:11:30Z) - Improving Signed Propagation for Graph Neural Networks in Multi-Class Environments [3.4498722449655066]
マルチクラスグラフにおける署名伝達を改善するための2つの新しい戦略を導入する。
提案手法はキャリブレーションとロバスト性の確保を両立させ,不確実性を低減させる。
6つのベンチマークグラフデータセットに対する広範な実験により,本定理の有効性を示す。
論文 参考訳(メタデータ) (2023-01-21T08:47:22Z) - Transductive Linear Probing: A Novel Framework for Few-Shot Node
Classification [56.17097897754628]
自己教師付きグラフと対照的な事前学習による帰納的線形探索は、同じプロトコル下での最先端の完全教師付きメタラーニング手法より優れていることを示す。
この研究が、数ショットのノード分類問題に新たな光を当て、グラフ上のわずかにラベル付けされたインスタンスから学ぶことの今後の研究を促進することを願っている。
論文 参考訳(メタデータ) (2022-12-11T21:10:34Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
補間型相関低減ネットワーク(ICRN)と呼ばれる新しいグラフコントラスト学習手法を提案する。
提案手法では,決定境界のマージンを大きくすることで,潜在特徴の識別能力を向上させる。
この2つの設定を組み合わせることで、豊富なラベル付きノードと稀に価値あるラベル付きノードから豊富な監視情報を抽出し、離散表現学習を行う。
論文 参考訳(メタデータ) (2022-06-06T14:26:34Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
最適グラフ構造を学習するための二段階最適化手法を提案する。
また、時間的複雑さをさらに軽減するために、低ランク近似モデルについても検討する。
論文 参考訳(メタデータ) (2022-05-06T03:37:00Z) - Handling Distribution Shifts on Graphs: An Invariance Perspective [78.31180235269035]
我々は、グラフ上のOOD問題を定式化し、新しい不変学習手法である探索・拡張リスク最小化(EERM)を開発する。
EERMは、複数の仮想環境からのリスクの分散を最大化するために、敵対的に訓練された複数のコンテキストエクスプローラーを利用する。
理論的に有効なOOD解の保証を示すことによって,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2022-02-05T02:31:01Z) - Amortized Probabilistic Detection of Communities in Graphs [39.56798207634738]
そこで我々は,アモータイズされたコミュニティ検出のためのシンプルなフレームワークを提案する。
我々はGNNの表現力と最近のアモータイズクラスタリングの手法を組み合わせる。
我々は、合成および実データセットに関するフレームワークから、いくつかのモデルを評価する。
論文 参考訳(メタデータ) (2020-10-29T16:18:48Z) - SFE-GACN: A Novel Unknown Attack Detection Method Using Intra Categories
Generation in Embedding Space [15.539505627198109]
暗号化されたネットワークトラフィック侵入検出では,ディープラーニングに基づくスキームが注目されている。
本稿では,埋め込み空間におけるカテゴリ内生成に基づく未知の攻撃検出手法を提案する。
その結果、最先端法と比較して平均TPRは8.38%高く、平均FPRは12.77%低いことがわかった。
論文 参考訳(メタデータ) (2020-04-12T20:51:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。