Incorporating Domain Differential Equations into Graph Convolutional Networks to Lower Generalization Discrepancy
- URL: http://arxiv.org/abs/2404.01217v1
- Date: Mon, 1 Apr 2024 16:17:11 GMT
- Title: Incorporating Domain Differential Equations into Graph Convolutional Networks to Lower Generalization Discrepancy
- Authors: Yue Sun, Chao Chen, Yuesheng Xu, Sihong Xie, Rick S. Blum, Parv Venkitasubramaniam,
- Abstract summary: We show how to incorporate domain differential equations into Graph Convolutional Networks (GCNs)
We propose two domain-differential-temporal-tion-informed networks called ReactionDiffusion Graph Convolutional Network (RDGCN)
We experimentally show that RDGCN and SIRGCN are more robust with mismatched testing data than the state-of-the-art deep learning methods.
- Score: 30.249981848630256
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ensuring both accuracy and robustness in time series prediction is critical to many applications, ranging from urban planning to pandemic management. With sufficient training data where all spatiotemporal patterns are well-represented, existing deep-learning models can make reasonably accurate predictions. However, existing methods fail when the training data are drawn from different circumstances (e.g., traffic patterns on regular days) compared to test data (e.g., traffic patterns after a natural disaster). Such challenges are usually classified under domain generalization. In this work, we show that one way to address this challenge in the context of spatiotemporal prediction is by incorporating domain differential equations into Graph Convolutional Networks (GCNs). We theoretically derive conditions where GCNs incorporating such domain differential equations are robust to mismatched training and testing data compared to baseline domain agnostic models. To support our theory, we propose two domain-differential-equation-informed networks called Reaction-Diffusion Graph Convolutional Network (RDGCN), which incorporates differential equations for traffic speed evolution, and Susceptible-Infectious-Recovered Graph Convolutional Network (SIRGCN), which incorporates a disease propagation model. Both RDGCN and SIRGCN are based on reliable and interpretable domain differential equations that allow the models to generalize to unseen patterns. We experimentally show that RDGCN and SIRGCN are more robust with mismatched testing data than the state-of-the-art deep learning methods.
Related papers
- Generalization of Graph Neural Networks is Robust to Model Mismatch [84.01980526069075]
Graph neural networks (GNNs) have demonstrated their effectiveness in various tasks supported by their generalization capabilities.
In this paper, we examine GNNs that operate on geometric graphs generated from manifold models.
Our analysis reveals the robustness of the GNN generalization in the presence of such model mismatch.
arXiv Detail & Related papers (2024-08-25T16:00:44Z) - DFA-GNN: Forward Learning of Graph Neural Networks by Direct Feedback Alignment [57.62885438406724]
Graph neural networks are recognized for their strong performance across various applications.
BP has limitations that challenge its biological plausibility and affect the efficiency, scalability and parallelism of training neural networks for graph-based tasks.
We propose DFA-GNN, a novel forward learning framework tailored for GNNs with a case study of semi-supervised learning.
arXiv Detail & Related papers (2024-06-04T07:24:51Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
We propose a novel Dynamic Diffusion-al Graph Neural Network (DVGNN) fortemporal forecasting.
The proposed DVGNN model outperforms state-of-the-art approaches and achieves outstanding Root Mean Squared Error result.
arXiv Detail & Related papers (2023-05-16T11:38:19Z) - Temporal Domain Generalization with Drift-Aware Dynamic Neural Network [12.483886657900525]
We propose a Temporal Domain Generalization with Drift-Aware Dynamic Neural Network (DRAIN) framework.
Specifically, we formulate the problem into a Bayesian framework that jointly models the relation between data and model dynamics.
It captures the temporal drift of model parameters and data distributions and can predict models in the future without the presence of future data.
arXiv Detail & Related papers (2022-05-21T20:01:31Z) - PGCN: Progressive Graph Convolutional Networks for Spatial-Temporal Traffic Forecasting [4.14360329494344]
We propose a novel traffic forecasting framework called Progressive Graph Convolutional Network (PGCN)
PGCN constructs a set of graphs by progressively adapting to online input data during the training and testing phases.
The proposed model achieves state-of-the-art performance with consistency in all datasets.
arXiv Detail & Related papers (2022-02-18T02:15:44Z) - Handling Distribution Shifts on Graphs: An Invariance Perspective [78.31180235269035]
We formulate the OOD problem on graphs and develop a new invariant learning approach, Explore-to-Extrapolate Risk Minimization (EERM)
EERM resorts to multiple context explorers that are adversarially trained to maximize the variance of risks from multiple virtual environments.
We prove the validity of our method by theoretically showing its guarantee of a valid OOD solution.
arXiv Detail & Related papers (2022-02-05T02:31:01Z) - Discovering Invariant Rationales for Graph Neural Networks [104.61908788639052]
Intrinsic interpretability of graph neural networks (GNNs) is to find a small subset of the input graph's features.
We propose a new strategy of discovering invariant rationale (DIR) to construct intrinsically interpretable GNNs.
arXiv Detail & Related papers (2022-01-30T16:43:40Z) - Crime Prediction with Graph Neural Networks and Multivariate Normal
Distributions [18.640610803366876]
We tackle the sparsity problem in high resolution by leveraging the flexible structure of graph convolutional networks (GCNs)
We build our model with Graph Convolutional Gated Recurrent Units (Graph-ConvGRU) to learn spatial, temporal, and categorical relations.
We show that our model is not only generative but also precise.
arXiv Detail & Related papers (2021-11-29T17:37:01Z) - Regularized Sequential Latent Variable Models with Adversarial Neural
Networks [33.74611654607262]
We will present different ways of using high level latent random variables in RNN to model the variability in the sequential data.
We will explore possible ways of using adversarial method to train a variational RNN model.
arXiv Detail & Related papers (2021-08-10T08:05:14Z) - Stochastic Graph Neural Networks [123.39024384275054]
Graph neural networks (GNNs) model nonlinear representations in graph data with applications in distributed agent coordination, control, and planning.
Current GNN architectures assume ideal scenarios and ignore link fluctuations that occur due to environment, human factors, or external attacks.
In these situations, the GNN fails to address its distributed task if the topological randomness is not considered accordingly.
arXiv Detail & Related papers (2020-06-04T08:00:00Z) - Deep Learning of Dynamic Subsurface Flow via Theory-guided Generative
Adversarial Network [0.0]
Theory-guided generative adversarial network (TgGAN) is proposed to solve dynamic partial differential equations (PDEs)
TgGAN is proposed for dynamic subsurface flow with heterogeneous model parameters.
Numerical results demonstrate that the TgGAN model is robust and reliable for deep learning of dynamic PDEs.
arXiv Detail & Related papers (2020-06-02T02:53:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.