論文の概要: Towards System Modelling to Support Diseases Data Extraction from the Electronic Health Records for Physicians Research Activities
- arxiv url: http://arxiv.org/abs/2404.01218v1
- Date: Mon, 1 Apr 2024 16:18:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-03 21:46:03.137245
- Title: Towards System Modelling to Support Diseases Data Extraction from the Electronic Health Records for Physicians Research Activities
- Title(参考訳): 医師研究活動における電子健康記録からの疾患データ抽出支援システムの構築に向けて
- Authors: Bushra F. Alsaqer, Alaa F. Alsaqer, Amna Asif,
- Abstract要約: 本研究の目的は、特定の人口に対する疾患統計のモニタリングなど、研究活動に利用できるデータを提供することである。
EHRシステムの制限の1つは、データは標準フォーマットではなく様々な形式で利用できることである。
まず、疾患や人口統計データの名称を1つの標準化された形式に変換し、研究活動に利用できるようにする必要がある。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The use of Electronic Health Records (EHRs) has increased dramatically in the past 15 years, as, it is considered an important source of managing data od patients. The EHRs are primary sources of disease diagnosis and demographic data of patients worldwide. Therefore, the data can be utilized for secondary tasks such as research. This paper aims to make such data usable for research activities such as monitoring disease statistics for a specific population. As a result, the researchers can detect the disease causes for the behavior and lifestyle of the target group. One of the limitations of EHRs systems is that the data is not available in the standard format but in various forms. Therefore, it is required to first convert the names of the diseases and demographics data into one standardized form to make it usable for research activities. There is a large amount of EHRs available, and solving the standardizing issues requires some optimized techniques. We used a first-hand EHR dataset extracted from EHR systems. Our application uploads the dataset from the EHRs and converts it to the ICD-10 coding system to solve the standardization problem. So, we first apply the steps of pre-processing, annotation, and transforming the data to convert it into the standard form. The data pre-processing is applied to normalize demographic formats. In the annotation step, a machine learning model is used to recognize the diseases from the text. Furthermore, the transforming step converts the disease name to the ICD-10 coding format. The model was evaluated manually by comparing its performance in terms of disease recognition with an available dictionary-based system (MetaMap). The accuracy of the proposed machine learning model is 81%, that outperformed MetaMap accuracy of 67%. This paper contributed to system modelling for EHR data extraction to support research activities.
- Abstract(参考訳): エレクトロニック・ヘルス・レコーズ(EHR)の使用は過去15年間で劇的に増加しており、データ・オド患者を管理する重要な情報源と考えられている。
EHRは、世界中の患者の疾患診断と人口統計の主要な情報源である。
したがって、データは研究などの二次的なタスクに利用することができる。
本研究の目的は、特定の人口に対する疾患統計のモニタリングなど、研究活動に利用できるデータを提供することである。
その結果、研究者は対象グループの行動や生活習慣の病因を検出することができる。
EHRシステムの制限の1つは、データは標準フォーマットではなく様々な形式で利用できることである。
そのため、まず疾患や人口統計データの名称を標準化した1つの形式に変換し、研究活動に活用することが求められている。
大量のEHRが利用可能であり、標準化問題を解決するには、いくつかの最適化されたテクニックが必要である。
EHRシステムから抽出した手動EHRデータセットを用いた。
本アプリケーションは, EHR からデータセットをアップロードし,それを ICD-10 符号化システムに変換し,標準化問題を解決する。
そこでまず、事前処理、アノテーション、データ変換のステップを適用して標準形式に変換します。
データ前処理は、人口統計形式を正規化するために適用される。
アノテーションのステップでは、テキストから病気を認識するために機械学習モデルが使用される。
さらに、トランスフォーミングステップは、病気名をICD-10符号化フォーマットに変換する。
このモデルは,病状認識と利用可能な辞書ベースシステム(MetaMap)を比較し,手動で評価した。
提案した機械学習モデルの精度は81%であり、MetaMapの精度は67%を上回った。
本稿では,研究活動を支援するためのEHRデータ抽出のためのシステムモデリングに貢献する。
関連論文リスト
- IGNITE: Individualized GeNeration of Imputations in Time-series
Electronic health records [7.451873794596469]
本研究では、患者動態を学習し、個人の人口動態の特徴や治療に合わせたパーソナライズされた値を生成する新しいディープラーニングモデルを提案する。
提案モデルであるIGNITEは,2段階の注意を付加した条件付き2変分オートエンコーダを用いて,個人に対して欠落した値を生成する。
IGNITEは,データ再構成の欠如やタスク予測において,最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-01-09T07:57:21Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
超強化ニューラルネットワーク(XBNet)は臨床劣化(CD)を予測するために用いられる
XGBoostモデルはブラジルの病院のデータからCDを予測する最良の結果を得た。
論文 参考訳(メタデータ) (2022-12-17T23:29:14Z) - Unsupervised Pre-Training on Patient Population Graphs for Patient-Level
Predictions [48.02011627390706]
プレトレーニングは、コンピュータビジョン(CV)、自然言語処理(NLP)、医療画像など、機械学習のさまざまな分野で成功している。
本稿では,患者結果の予測のために,教師なし事前学習を異種マルチモーダルEHRデータに適用する。
提案手法は,人口レベルでのデータモデリングに有効であることがわかった。
論文 参考訳(メタデータ) (2022-03-23T17:59:45Z) - Pre-training transformer-based framework on large-scale pediatric claims
data for downstream population-specific tasks [3.1580072841682734]
本研究は、小児科のクレームデータセット全体をトレーニングする一般的な事前学習モデルであるClaim Pre-Training(Claim-PT)フレームワークを提案する。
効果的な知識伝達はタスク対応微調整段階を通じて完了する。
我々は100万人以上の患者記録を持つ実世界のクレームデータセットの実験を行った。
論文 参考訳(メタデータ) (2021-06-24T15:25:41Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
ドメイン適応を容易にするデータ拡張手法を提案する。
逆生成したサンプルはドメイン適応時に使用される。
その結果,本手法の有効性とタスクの一般性が確認された。
論文 参考訳(メタデータ) (2021-01-13T03:20:20Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - A Deep Learning Pipeline for Patient Diagnosis Prediction Using
Electronic Health Records [0.5672132510411464]
我々は、公衆衛生データセットを普遍的なフォーマットに容易に変換するPythonパッケージを開発し、公開する。
複数の診断を同時に予測する2つの新しいモデルアーキテクチャを提案する。
どちらのモデルも高い精度で複数の診断を同時に予測できる。
論文 参考訳(メタデータ) (2020-06-23T14:58:58Z) - Generation of Differentially Private Heterogeneous Electronic Health
Records [9.926231893220061]
本稿では, 合成異種EHRの生成にジェネレーティブ・アドバーサリアル・ネットワークを用いて検討する。
本稿では,DP 合成 EHR データセットを作成するために,差分プライバシ(DP)保存最適化の適用について検討する。
論文 参考訳(メタデータ) (2020-06-05T13:21:46Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
新型コロナウイルス(COVID-19)のパンデミックは世界中の緊急対応システムに挑戦している。
本研究は, 症状患者の血液検査データから得られた機械学習モデルについて述べる。
提案されたモデルでは、新型コロナウイルスqRT-PCRの結果を、高い精度、感度、特異性で症状のある個人に予測することができる。
論文 参考訳(メタデータ) (2020-05-10T01:45:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。