論文の概要: LLM as a Mastermind: A Survey of Strategic Reasoning with Large Language Models
- arxiv url: http://arxiv.org/abs/2404.01230v1
- Date: Mon, 1 Apr 2024 16:50:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-03 21:46:03.118603
- Title: LLM as a Mastermind: A Survey of Strategic Reasoning with Large Language Models
- Title(参考訳): マスターミンドとしてのLLM:大規模言語モデルを用いた戦略的推論に関する調査
- Authors: Yadong Zhang, Shaoguang Mao, Tao Ge, Xun Wang, Adrian de Wynter, Yan Xia, Wenshan Wu, Ting Song, Man Lan, Furu Wei,
- Abstract要約: 戦略推論は、戦略を調整しながら、マルチエージェント設定における敵の行動を理解し、予測する必要がある。
大規模言語モデルを用いた戦略的推論に関連するスコープ,アプリケーション,方法論,評価指標について検討する。
戦略的推論を重要な認知能力として重要視し、将来の研究の方向性や潜在的な改善に関する洞察を提供する。
- 参考スコア(独自算出の注目度): 75.89014602596673
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a comprehensive survey of the current status and opportunities for Large Language Models (LLMs) in strategic reasoning, a sophisticated form of reasoning that necessitates understanding and predicting adversary actions in multi-agent settings while adjusting strategies accordingly. Strategic reasoning is distinguished by its focus on the dynamic and uncertain nature of interactions among multi-agents, where comprehending the environment and anticipating the behavior of others is crucial. We explore the scopes, applications, methodologies, and evaluation metrics related to strategic reasoning with LLMs, highlighting the burgeoning development in this area and the interdisciplinary approaches enhancing their decision-making performance. It aims to systematize and clarify the scattered literature on this subject, providing a systematic review that underscores the importance of strategic reasoning as a critical cognitive capability and offers insights into future research directions and potential improvements.
- Abstract(参考訳): 本稿では,戦略的推論における大規模言語モデル(LLM)の現状と可能性に関する総合的な調査について述べる。
戦略的推論は、環境を理解し、他人の行動を期待するマルチエージェント間の相互作用の動的で不確実な性質に焦点をあてることによって区別される。
我々は, LLMによる戦略的推論に関連する範囲, 応用, 方法論, 評価指標について検討し, この分野の急成長と学際的アプローチによる意思決定性能の向上について考察する。
本研究の目的は、この主題に関する散在する文献を体系化し、明確化し、戦略的推論の重要性を批判的認知能力として示し、今後の研究の方向性と潜在的な改善についての洞察を提供する体系的なレビューを提供することである。
関連論文リスト
- EPO: Explicit Policy Optimization for Strategic Reasoning in LLMs via Reinforcement Learning [69.55982246413046]
戦略的推論のための明示的なポリシー最適化(EPO)を提案する。
EPOはオープンなアクション空間で戦略を提供し、任意のLLMエージェントにプラグインすることで、ゴール指向の振る舞いを動機付けることができる。
社会的および物理的領域にわたる実験は、EPOの長期的なゴールアライメント能力を示す。
論文 参考訳(メタデータ) (2025-02-18T03:15:55Z) - LogiDynamics: Unraveling the Dynamics of Logical Inference in Large Language Model Reasoning [49.58786377307728]
本稿では、類似推論のための制御された評価環境を導入することにより、探索的アプローチを採用する。
帰納的,帰納的,帰納的,帰納的な推論パイプラインの比較力学を解析する。
仮説選択や検証,洗練といった高度なパラダイムを考察し,論理的推論のスケールアップの可能性を明らかにする。
論文 参考訳(メタデータ) (2025-02-16T15:54:53Z) - Agentic LLM Framework for Adaptive Decision Discourse [2.4919169815423743]
本研究では,実世界のエージェント型大規模言語モデル(LLM)フレームワークを紹介する。
従来の意思決定支援ツールとは異なり、このフレームワークは対話、トレードオフ探索、エージェント間の相互作用によって生成される創発的なシナジーを強調している。
その結果、第1次探索がいかに堅牢で公平なレコメンデーションパスを育むかが明らかとなった。
論文 参考訳(メタデータ) (2025-02-16T03:46:37Z) - Meta Reasoning for Large Language Models [58.87183757029041]
大規模言語モデル(LLM)の新規かつ効率的なシステムプロセッシング手法であるメタ推論プロンプト(MRP)を導入する。
MRPは、各タスクの特定の要求に基づいて異なる推論メソッドを動的に選択し、適用するようLLMに誘導する。
総合的なベンチマークによりMPPの有効性を評価する。
論文 参考訳(メタデータ) (2024-06-17T16:14:11Z) - STRIDE: A Tool-Assisted LLM Agent Framework for Strategic and Interactive Decision-Making [43.734386326024016]
大規模言語モデル(LLM)は自然言語処理に革命をもたらしており、言語能力と推論能力が顕著である。
本稿では,その戦略的意思決定能力を高めるため,メモリと特殊なツールを備えた新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-25T23:25:10Z) - K-Level Reasoning: Establishing Higher Order Beliefs in Large Language Models for Strategic Reasoning [76.3114831562989]
マルチエージェント環境で戦略を動的に適応させるためには、LLM(Large Language Model)エージェントが必要である。
我々は,「K-Level Reasoning with Large Language Models (K-R)」という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-02T16:07:05Z) - LLM-SAP: Large Language Models Situational Awareness Based Planning [0.0]
我々は、潜在的なリスクを予測し、積極的に軽減する方法論を開発するために、マルチエージェント推論フレームワークを使用します。
提案手法は,人間中心のインタラクションの複雑さを計画プロセスに組み込むことによって,従来のオートマトン理論から分岐する。
論文 参考訳(メタデータ) (2023-12-26T17:19:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。