論文の概要: Decentralized Collaborative Learning Framework with External Privacy Leakage Analysis
- arxiv url: http://arxiv.org/abs/2404.01270v1
- Date: Mon, 1 Apr 2024 17:46:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-03 21:26:33.418701
- Title: Decentralized Collaborative Learning Framework with External Privacy Leakage Analysis
- Title(参考訳): 外部プライバシー漏洩解析を用いた分散協調学習フレームワーク
- Authors: Tsuyoshi Idé, Dzung T. Phan, Rudy Raymond,
- Abstract要約: 本稿では,プライバシ制約下での分散マルチタスク学習における2つの方法論的進歩について述べる。
まず,従来の協調辞書学習フレームワークであるCollabDictを拡張し,そのフレームワークに深い変分オートエンコーダ(VAE)を組み込む。
第2に、「事前学習モデル」を広く活用することを考えると、CollabDictでトレーニングされたモデルが外部で共有される場合、データのプライバシー漏洩に関する数学的解析を提供する。
- 参考スコア(独自算出の注目度): 13.369004892264146
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents two methodological advancements in decentralized multi-task learning under privacy constraints, aiming to pave the way for future developments in next-generation Blockchain platforms. First, we expand the existing framework for collaborative dictionary learning (CollabDict), which has previously been limited to Gaussian mixture models, by incorporating deep variational autoencoders (VAEs) into the framework, with a particular focus on anomaly detection. We demonstrate that the VAE-based anomaly score function shares the same mathematical structure as the non-deep model, and provide comprehensive qualitative comparison. Second, considering the widespread use of "pre-trained models," we provide a mathematical analysis on data privacy leakage when models trained with CollabDict are shared externally. We show that the CollabDict approach, when applied to Gaussian mixtures, adheres to a Renyi differential privacy criterion. Additionally, we propose a practical metric for monitoring internal privacy breaches during the learning process.
- Abstract(参考訳): 本稿では,プライバシ制約下での分散マルチタスク学習における2つの方法論的進歩について述べる。
まず,従来ガウス混合モデルに限られていた協調辞書学習フレームワーク(CollabDict)を,特に異常検出に焦点をあてて,そのフレームワークに深部変分オートエンコーダ(VAE)を組み込むことにより拡張する。
VAEに基づく異常スコア関数は,非ディープモデルと同じ数学的構造を共有し,総合的な定性比較を行う。
次に,コラボディクトでトレーニングしたモデルを外部で共有する場合に,データプライバシリークを数学的に解析する。
ガウス混合体に適用されたCollabDictアプローチは、Renyi差分プライバシー基準に準拠していることを示す。
さらに,学習過程における内部プライバシー侵害を監視するための実用的な指標を提案する。
関連論文リスト
- Differentially Private Random Feature Model [52.468511541184895]
プライバシを保存するカーネルマシンに対して,差分的にプライベートな特徴モデルを作成する。
本手法は,プライバシを保護し,一般化誤差を導出する。
論文 参考訳(メタデータ) (2024-12-06T05:31:08Z) - Dynamic Post-Hoc Neural Ensemblers [55.15643209328513]
本研究では,ニューラルネットワークをアンサンブル手法として活用することを検討する。
低多様性のアンサンブルを学習するリスクを動機として,ベースモデル予測をランダムにドロップすることでモデルの正規化を提案する。
このアプローチはアンサンブル内の多様性を低くし、オーバーフィッティングを減らし、一般化能力を向上させる。
論文 参考訳(メタデータ) (2024-10-06T15:25:39Z) - Model Inversion Attacks Through Target-Specific Conditional Diffusion Models [54.69008212790426]
モデル反転攻撃(MIA)は、ターゲット分類器のトレーニングセットからプライベートイメージを再構築することを目的としており、それによってAIアプリケーションにおけるプライバシー上の懸念が高まる。
従来のGANベースのMIAは、GANの固有の欠陥と潜伏空間における最適化の偏りにより、劣った遺伝子的忠実度に悩まされる傾向にある。
これらの問題を緩和するために拡散モデル反転(Diff-MI)攻撃を提案する。
論文 参考訳(メタデータ) (2024-07-16T06:38:49Z) - Collaborative Heterogeneous Causal Inference Beyond Meta-analysis [68.4474531911361]
異種データを用いた因果推論のための協調的逆確率スコア推定器を提案する。
異質性の増加に伴うメタアナリシスに基づく手法に対して,本手法は有意な改善を示した。
論文 参考訳(メタデータ) (2024-04-24T09:04:36Z) - BRFL: A Blockchain-based Byzantine-Robust Federated Learning Model [8.19957400564017]
分散ノードにデータを格納し、モデルパラメータのみを共有するフェデレーション学習は、この問題に対処するために大きな注目を集めている。
悪質なローカルモデルが集約中のグローバルモデルのパフォーマンスを損なうという、ビザンティン攻撃問題(英語版)によるフェデレートラーニング(英語版)において、課題が生じる。
本稿では、フェデレートラーニングとブロックチェーン技術を組み合わせたByzantine-Robust Federated Learning(BRLF)モデルの統合を提案する。
論文 参考訳(メタデータ) (2023-10-20T10:21:50Z) - Class-Incremental Mixture of Gaussians for Deep Continual Learning [15.49323098362628]
本稿では,ガウスモデルの混合を連続学習フレームワークに組み込むことを提案する。
固定抽出器を用いたメモリフリーシナリオにおいて,本モデルが効果的に学習可能であることを示す。
論文 参考訳(メタデータ) (2023-07-09T04:33:19Z) - Structured Cooperative Learning with Graphical Model Priors [98.53322192624594]
ローカルデータに制限のある分散デバイス上で、さまざまなタスクに対してパーソナライズされたモデルをトレーニングする方法を研究する。
本稿では,デバイス間の協調グラフをグラフィカルモデルにより生成する「構造化協調学習(SCooL)」を提案する。
SCooLを評価し,既存の分散学習手法と比較した。
論文 参考訳(メタデータ) (2023-06-16T02:41:31Z) - Differentially private partitioned variational inference [28.96767727430277]
複数のデバイスに分散している機密データから、プライバシ保護モデルを学ぶことは、ますます重要な問題である。
ベイズ分布に対する変分近似を学習するための最初の一般フレームワークである差分分割変分推論について述べる。
論文 参考訳(メタデータ) (2022-09-23T13:58:40Z) - Cauchy-Schwarz Regularized Autoencoder [68.80569889599434]
変分オートエンコーダ(VAE)は、強力で広く使われている生成モデルのクラスである。
GMMに対して解析的に計算できるCauchy-Schwarz分散に基づく新しい制約対象を導入する。
本研究の目的は,密度推定,教師なしクラスタリング,半教師なし学習,顔分析における変分自動エンコーディングモデルの改善である。
論文 参考訳(メタデータ) (2021-01-06T17:36:26Z) - GRAFFL: Gradient-free Federated Learning of a Bayesian Generative Model [8.87104231451079]
本稿では、GRAFFLと呼ばれる、最初の勾配のない連邦学習フレームワークを提案する。
参加する各機関から得られた暗黙の情報を用いて、パラメータの後方分布を学習する。
本稿では,GRAFFLに基づくベイズ混合モデルを提案する。
論文 参考訳(メタデータ) (2020-08-29T07:19:44Z) - Concentrated Differentially Private and Utility Preserving Federated
Learning [24.239992194656164]
フェデレーション・ラーニング(Federated Learning)とは、エッジデバイスのセットが、中央サーバのオーケストレーションの下でモデルを協調的にトレーニングする、機械学習環境である。
本稿では,モデルユーティリティの劣化を伴わずに,プライバシ問題に対処するフェデレーション学習手法を開発する。
このアプローチのエンドツーエンドのプライバシ保証を厳格に提供し、理論的収束率を分析します。
論文 参考訳(メタデータ) (2020-03-30T19:20:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。