論文の概要: Language Guided Domain Generalized Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2404.01272v2
- Date: Wed, 3 Apr 2024 08:27:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 11:43:37.907400
- Title: Language Guided Domain Generalized Medical Image Segmentation
- Title(参考訳): 言語ガイドドメイン一般化医用画像分割
- Authors: Shahina Kunhimon, Muzammal Naseer, Salman Khan, Fahad Shahbaz Khan,
- Abstract要約: 単一ソースドメインの一般化は、より信頼性が高く一貫性のあるイメージセグメンテーションを現実の臨床環境にわたって約束する。
本稿では,テキストエンコーダ機能によって案内されるコントラスト学習機構を組み込むことで,テキスト情報を明確に活用する手法を提案する。
文献における既存手法に対して,本手法は良好な性能を発揮する。
- 参考スコア(独自算出の注目度): 68.93124785575739
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Single source domain generalization (SDG) holds promise for more reliable and consistent image segmentation across real-world clinical settings particularly in the medical domain, where data privacy and acquisition cost constraints often limit the availability of diverse datasets. Depending solely on visual features hampers the model's capacity to adapt effectively to various domains, primarily because of the presence of spurious correlations and domain-specific characteristics embedded within the image features. Incorporating text features alongside visual features is a potential solution to enhance the model's understanding of the data, as it goes beyond pixel-level information to provide valuable context. Textual cues describing the anatomical structures, their appearances, and variations across various imaging modalities can guide the model in domain adaptation, ultimately contributing to more robust and consistent segmentation. In this paper, we propose an approach that explicitly leverages textual information by incorporating a contrastive learning mechanism guided by the text encoder features to learn a more robust feature representation. We assess the effectiveness of our text-guided contrastive feature alignment technique in various scenarios, including cross-modality, cross-sequence, and cross-site settings for different segmentation tasks. Our approach achieves favorable performance against existing methods in literature. Our code and model weights are available at https://github.com/ShahinaKK/LG_SDG.git.
- Abstract(参考訳): 単一ソースドメインの一般化(SDG)は、特にデータプライバシと取得コストの制約によって、さまざまなデータセットの可用性が制限される医療領域において、実際の臨床領域におけるより信頼性が高く一貫性のあるイメージセグメンテーションを約束する。
視覚的特徴のみにのみ依存することで、様々な領域に効果的に適応するモデルの能力が損なわれる。
テキスト機能を視覚的特徴と一緒に組み込むことは、ピクセルレベルの情報を超えて貴重なコンテキストを提供するため、モデルによるデータの理解を強化するための潜在的な解決策である。
解剖学的構造、その外観、様々な画像モダリティのバリエーションを記述したテキストの手がかりは、ドメイン適応においてモデルを導くことができ、最終的にはより堅牢で一貫したセグメンテーションに寄与する。
本稿では,テキストエンコーダの特徴に導かれるコントラスト学習機構を取り入れて,より堅牢な特徴表現を学習することで,テキスト情報を明確に活用する手法を提案する。
我々は,テキスト誘導型コントラスト機能アライメント手法の有効性を,異なるセグメンテーションタスクのためのクロスモーダル,クロスシーケンス,クロスサイト設定など様々なシナリオで評価する。
文献における既存手法に対して,本手法は良好な性能を発揮する。
コードとモデルの重み付けはhttps://github.com/ShahinaKK/LG_SDG.git.comで公開されています。
関連論文リスト
- Leveraging Open-Vocabulary Diffusion to Camouflaged Instance
Segmentation [59.78520153338878]
テキスト・ツー・イメージ拡散技術は、テキスト記述から高品質な画像を生成する素晴らしい能力を示している。
そこで本研究では,オープン語彙を応用した最先端拡散モデルを用いて,多スケールのテキスト・視覚的特徴を学習する手法を提案する。
論文 参考訳(メタデータ) (2023-12-29T07:59:07Z) - Harnessing the Power of Multi-Lingual Datasets for Pre-training: Towards
Enhancing Text Spotting Performance [15.513912470752041]
様々な領域への適応能力は、実環境にデプロイする際のシーンテキストスポッティングモデルに不可欠である。
本稿では,ドメイン適応型シーンテキストスポッティングの問題,すなわちマルチドメインソースデータを用いたモデルトレーニングについて検討する。
その結果,複数の領域にまたがるテキストスポッティングベンチマークにおいて,中間表現が有意な性能を発揮する可能性が明らかとなった。
論文 参考訳(メタデータ) (2023-10-02T06:08:01Z) - Improving Diversity in Zero-Shot GAN Adaptation with Semantic Variations [61.132408427908175]
0ショットのGAN適応は、よく訓練されたジェネレータを再利用して、目に見えないターゲットドメインの画像を合成することを目的としている。
実際の画像の代わりに1つの代表的テキスト機能しか持たないため、合成された画像は徐々に多様性を損なう。
そこで本研究では,CLIP空間における対象テキストの意味的変化を見つけるための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-08-21T08:12:28Z) - HGAN: Hierarchical Graph Alignment Network for Image-Text Retrieval [13.061063817876336]
画像テキスト検索のための階層型グラフアライメントネットワーク(HGAN)を提案する。
まず、包括的マルチモーダル特徴を捉えるために、画像の特徴グラフとテキストのモダリティをそれぞれ構築する。
そして、MFAR(Multi-granularity Feature Aggregation and Rearrangement)モジュールを設計した多粒性共有空間を構築する。
最後に、最終的な画像とテキストの特徴は、階層的アライメントを達成するために、3レベル類似関数によってさらに洗練される。
論文 参考訳(メタデータ) (2022-12-16T05:08:52Z) - Learning to Model Multimodal Semantic Alignment for Story Visualization [58.16484259508973]
ストーリービジュアライゼーションは、複数文のストーリーで各文をナレーションする一連の画像を生成することを目的としている。
現在の作業は、その固定されたアーキテクチャと入力モダリティの多様性のため、セマンティックなミスアライメントの問題に直面している。
GANに基づく生成モデルにおいて,テキストと画像表現のセマンティックアライメントを学習し,それらのセマンティックレベルを一致させる方法について検討する。
論文 参考訳(メタデータ) (2022-11-14T11:41:44Z) - CRIS: CLIP-Driven Referring Image Segmentation [71.56466057776086]
エンドツーエンドのCLIP駆動参照画像フレームワーク(CRIS)を提案する。
CRISは、テキストとピクセルのアライメントを達成するために、視覚言語によるデコーディングとコントラスト学習に頼っている。
提案するフレームワークは, 後処理を伴わずに, 最先端の性能を著しく向上させる。
論文 参考訳(メタデータ) (2021-11-30T07:29:08Z) - DoFE: Domain-oriented Feature Embedding for Generalizable Fundus Image
Segmentation on Unseen Datasets [96.92018649136217]
対象ドメインに対するCNNの一般化能力を向上させるために,新しいドメイン指向特徴埋め込み(DoFE)フレームワークを提案する。
私たちのDoFEフレームワークは、マルチソースドメインから学んだ追加のドメイン事前知識で、画像機能を動的に強化します。
本フレームワークは、未確認データセットのセグメンテーション結果を満足して生成し、他の領域の一般化やネットワークの正規化手法を超越する。
論文 参考訳(メタデータ) (2020-10-13T07:28:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。