Evaluating Privacy Perceptions, Experience, and Behavior of Software Development Teams
- URL: http://arxiv.org/abs/2404.01283v2
- Date: Sat, 8 Jun 2024 23:28:55 GMT
- Title: Evaluating Privacy Perceptions, Experience, and Behavior of Software Development Teams
- Authors: Maxwell Prybylo, Sara Haghighi, Sai Teja Peddinti, Sepideh Ghanavati,
- Abstract summary: Our survey includes 362 participants from 23 countries, encompassing roles such as product managers, developers, and testers.
Our results show diverse definitions of privacy across SDLC roles, emphasizing the need for a holistic privacy approach throughout SDLC.
Most participants are more familiar with HIPAA and other regulations, with multi-jurisdictional compliance being their primary concern.
- Score: 2.818645620433775
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: With the increase in the number of privacy regulations, small development teams are forced to make privacy decisions on their own. In this paper, we conduct a mixed-method survey study, including statistical and qualitative analysis, to evaluate the privacy perceptions, practices, and knowledge of members involved in various phases of the Software Development Life Cycle (SDLC). Our survey includes 362 participants from 23 countries, encompassing roles such as product managers, developers, and testers. Our results show diverse definitions of privacy across SDLC roles, emphasizing the need for a holistic privacy approach throughout SDLC. We find that software teams, regardless of their region, are less familiar with privacy concepts (such as anonymization), relying on self-teaching and forums. Most participants are more familiar with GDPR and HIPAA than other regulations, with multi-jurisdictional compliance being their primary concern. Our results advocate the need for role-dependent solutions to address the privacy challenges, and we highlight research directions and educational takeaways to help improve privacy-aware SDLC.
Related papers
- "Sorry for bugging you so much." Exploring Developers' Behavior Towards Privacy-Compliant Implementation [7.736621118547534]
We conducted a study with 30 professional software developers on privacy-sensitive programming tasks.
None of the 3 tasks were privacy-compliant by all 30 participants.
Participants reported severe issues addressing common privacy requirements such as purpose limitation, user consent, or data minimization.
arXiv Detail & Related papers (2025-04-09T08:59:17Z) - Multi-P$^2$A: A Multi-perspective Benchmark on Privacy Assessment for Large Vision-Language Models [65.2761254581209]
We evaluate the privacy preservation capabilities of 21 open-source and 2 closed-source Large Vision-Language Models (LVLMs)
Based on Multi-P$2$A, we evaluate the privacy preservation capabilities of 21 open-source and 2 closed-source LVLMs.
Our results reveal that current LVLMs generally pose a high risk of facilitating privacy breaches.
arXiv Detail & Related papers (2024-12-27T07:33:39Z) - How Privacy-Savvy Are Large Language Models? A Case Study on Compliance and Privacy Technical Review [15.15468770348023]
We evaluate large language models' performance in privacy-related tasks such as privacy information extraction (PIE), legal and regulatory key point detection (KPD), and question answering (QA)
Through an empirical assessment, we investigate the capacity of several prominent LLMs, including BERT, GPT-3.5, GPT-4, and custom models, in executing privacy compliance checks and technical privacy reviews.
While LLMs show promise in automating privacy reviews and identifying regulatory discrepancies, significant gaps persist in their ability to fully comply with evolving legal standards.
arXiv Detail & Related papers (2024-09-04T01:51:37Z) - PrivacyLens: Evaluating Privacy Norm Awareness of Language Models in Action [54.11479432110771]
PrivacyLens is a novel framework designed to extend privacy-sensitive seeds into expressive vignettes and further into agent trajectories.
We instantiate PrivacyLens with a collection of privacy norms grounded in privacy literature and crowdsourced seeds.
State-of-the-art LMs, like GPT-4 and Llama-3-70B, leak sensitive information in 25.68% and 38.69% of cases, even when prompted with privacy-enhancing instructions.
arXiv Detail & Related papers (2024-08-29T17:58:38Z) - Privacy Checklist: Privacy Violation Detection Grounding on Contextual Integrity Theory [43.12744258781724]
We formulate the privacy issue as a reasoning problem rather than simple pattern matching.
We develop the first comprehensive checklist that covers social identities, private attributes, and existing privacy regulations.
arXiv Detail & Related papers (2024-08-19T14:48:04Z) - Mind the Privacy Unit! User-Level Differential Privacy for Language Model Fine-Tuning [62.224804688233]
differential privacy (DP) offers a promising solution by ensuring models are 'almost indistinguishable' with or without any particular privacy unit.
We study user-level DP motivated by applications where it necessary to ensure uniform privacy protection across users.
arXiv Detail & Related papers (2024-06-20T13:54:32Z) - Human-Centered Privacy Research in the Age of Large Language Models [31.379232599019915]
This SIG aims to bring together researchers with backgrounds in usable security and privacy, human-AI collaboration, NLP, or any other related domains to share their perspectives and experiences on this problem.
arXiv Detail & Related papers (2024-02-03T02:32:45Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
Data with privacy concerns comes with stringent regulations that frequently prohibited data access and data sharing.
Overcoming these obstacles is key for technological progress in many real-world application scenarios that involve privacy sensitive data.
Differentially private (DP) data publishing provides a compelling solution, where only a sanitized form of the data is publicly released.
arXiv Detail & Related papers (2023-09-27T14:38:16Z) - Systematic Review on Privacy Categorization [1.5377372227901214]
This work aims to present a systematic review of the literature on privacy categorization.
Privacy categorization involves the possibility to classify users according to specific prerequisites.
arXiv Detail & Related papers (2023-07-07T15:18:26Z) - Privacy Explanations - A Means to End-User Trust [64.7066037969487]
We looked into how explainability might help to tackle this problem.
We created privacy explanations that aim to help to clarify to end users why and for what purposes specific data is required.
Our findings reveal that privacy explanations can be an important step towards increasing trust in software systems.
arXiv Detail & Related papers (2022-10-18T09:30:37Z) - User Perception of Privacy with Ubiquitous Devices [5.33024001730262]
This study aims to explore and discover various concerns related to perception of privacy in this era of ubiquitous technologies.
Key themes like attitude towards privacy in public and private spaces, privacy awareness, consent seeking, dilemmas/confusions related to various technologies, impact of attitude and beliefs on individuals actions regarding how to protect oneself from invasion of privacy in both public and private spaces.
arXiv Detail & Related papers (2021-07-23T05:01:44Z) - Applications of Differential Privacy in Social Network Analysis: A
Survey [60.696428840516724]
Differential privacy is effective in sharing information and preserving privacy with a strong guarantee.
Social network analysis has been extensively adopted in many applications, opening a new arena for the application of differential privacy.
arXiv Detail & Related papers (2020-10-06T19:06:03Z) - Private Reinforcement Learning with PAC and Regret Guarantees [69.4202374491817]
We design privacy preserving exploration policies for episodic reinforcement learning (RL)
We first provide a meaningful privacy formulation using the notion of joint differential privacy (JDP)
We then develop a private optimism-based learning algorithm that simultaneously achieves strong PAC and regret bounds, and enjoys a JDP guarantee.
arXiv Detail & Related papers (2020-09-18T20:18:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.