How Privacy-Savvy Are Large Language Models? A Case Study on Compliance and Privacy Technical Review
- URL: http://arxiv.org/abs/2409.02375v3
- Date: Mon, 23 Sep 2024 02:30:21 GMT
- Title: How Privacy-Savvy Are Large Language Models? A Case Study on Compliance and Privacy Technical Review
- Authors: Xichou Zhu, Yang Liu, Zhou Shen, Yi Liu, Min Li, Yujun Chen, Benzi John, Zhenzhen Ma, Tao Hu, Zhi Li, Bolong Yang, Manman Wang, Zongxing Xie, Peng Liu, Dan Cai, Junhui Wang,
- Abstract summary: We evaluate large language models' performance in privacy-related tasks such as privacy information extraction (PIE), legal and regulatory key point detection (KPD), and question answering (QA)
Through an empirical assessment, we investigate the capacity of several prominent LLMs, including BERT, GPT-3.5, GPT-4, and custom models, in executing privacy compliance checks and technical privacy reviews.
While LLMs show promise in automating privacy reviews and identifying regulatory discrepancies, significant gaps persist in their ability to fully comply with evolving legal standards.
- Score: 15.15468770348023
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The recent advances in large language models (LLMs) have significantly expanded their applications across various fields such as language generation, summarization, and complex question answering. However, their application to privacy compliance and technical privacy reviews remains under-explored, raising critical concerns about their ability to adhere to global privacy standards and protect sensitive user data. This paper seeks to address this gap by providing a comprehensive case study evaluating LLMs' performance in privacy-related tasks such as privacy information extraction (PIE), legal and regulatory key point detection (KPD), and question answering (QA) with respect to privacy policies and data protection regulations. We introduce a Privacy Technical Review (PTR) framework, highlighting its role in mitigating privacy risks during the software development life-cycle. Through an empirical assessment, we investigate the capacity of several prominent LLMs, including BERT, GPT-3.5, GPT-4, and custom models, in executing privacy compliance checks and technical privacy reviews. Our experiments benchmark the models across multiple dimensions, focusing on their precision, recall, and F1-scores in extracting privacy-sensitive information and detecting key regulatory compliance points. While LLMs show promise in automating privacy reviews and identifying regulatory discrepancies, significant gaps persist in their ability to fully comply with evolving legal standards. We provide actionable recommendations for enhancing LLMs' capabilities in privacy compliance, emphasizing the need for robust model improvements and better integration with legal and regulatory requirements. This study underscores the growing importance of developing privacy-aware LLMs that can both support businesses in compliance efforts and safeguard user privacy rights.
Related papers
- LegiLM: A Fine-Tuned Legal Language Model for Data Compliance [5.256747140296861]
LegiLM is a novel legal language model specifically tailored for consulting on data or information compliance.
It has been fine-tuned to automatically assess whether particular actions or events breach data security and privacy regulations.
LegiLM excels in detecting data regulation breaches, offering sound legal justifications, and recommending necessary compliance modifications.
arXiv Detail & Related papers (2024-09-09T02:06:52Z) - PrivacyLens: Evaluating Privacy Norm Awareness of Language Models in Action [54.11479432110771]
PrivacyLens is a novel framework designed to extend privacy-sensitive seeds into expressive vignettes and further into agent trajectories.
We instantiate PrivacyLens with a collection of privacy norms grounded in privacy literature and crowdsourced seeds.
State-of-the-art LMs, like GPT-4 and Llama-3-70B, leak sensitive information in 25.68% and 38.69% of cases, even when prompted with privacy-enhancing instructions.
arXiv Detail & Related papers (2024-08-29T17:58:38Z) - Mind the Privacy Unit! User-Level Differential Privacy for Language Model Fine-Tuning [62.224804688233]
differential privacy (DP) offers a promising solution by ensuring models are 'almost indistinguishable' with or without any particular privacy unit.
We study user-level DP motivated by applications where it necessary to ensure uniform privacy protection across users.
arXiv Detail & Related papers (2024-06-20T13:54:32Z) - GoldCoin: Grounding Large Language Models in Privacy Laws via Contextual Integrity Theory [44.297102658873726]
Existing research studies privacy by exploring various privacy attacks, defenses, and evaluations within narrowly predefined patterns.
We introduce a novel framework, GoldCoin, designed to efficiently ground LLMs in privacy laws for judicial assessing privacy violations.
Our framework leverages the theory of contextual integrity as a bridge, creating numerous synthetic scenarios grounded in relevant privacy statutes.
arXiv Detail & Related papers (2024-06-17T02:27:32Z) - No Free Lunch Theorem for Privacy-Preserving LLM Inference [30.554456047738295]
This study develops a framework for inferring privacy-protected Large Language Models (LLMs)
It lays down a solid theoretical basis for examining the interplay between privacy preservation and utility.
arXiv Detail & Related papers (2024-05-31T08:22:53Z) - PrivComp-KG : Leveraging Knowledge Graph and Large Language Models for Privacy Policy Compliance Verification [0.0]
We propose a Large Language Model (LLM) and Semantic Web based approach for privacy compliance.
PrivComp-KG is designed to efficiently store and retrieve comprehensive information concerning privacy policies.
It can be queried to check for compliance with privacy policies by each vendor against relevant policy regulations.
arXiv Detail & Related papers (2024-04-30T17:44:44Z) - Privacy Preserving Large Language Models: ChatGPT Case Study Based Vision and Framework [6.828884629694705]
This article proposes the conceptual model called PrivChatGPT, a privacy-generative model for LLMs.
PrivChatGPT consists of two main components i.e., preserving user privacy during the data curation/pre-processing together with preserving private context and the private training process for large-scale data.
arXiv Detail & Related papers (2023-10-19T06:55:13Z) - PrivacyMind: Large Language Models Can Be Contextual Privacy Protection Learners [81.571305826793]
We introduce Contextual Privacy Protection Language Models (PrivacyMind)
Our work offers a theoretical analysis for model design and benchmarks various techniques.
In particular, instruction tuning with both positive and negative examples stands out as a promising method.
arXiv Detail & Related papers (2023-10-03T22:37:01Z) - Advancing Differential Privacy: Where We Are Now and Future Directions for Real-World Deployment [100.1798289103163]
We present a detailed review of current practices and state-of-the-art methodologies in the field of differential privacy (DP)
Key points and high-level contents of the article were originated from the discussions from "Differential Privacy (DP): Challenges Towards the Next Frontier"
This article aims to provide a reference point for the algorithmic and design decisions within the realm of privacy, highlighting important challenges and potential research directions.
arXiv Detail & Related papers (2023-04-14T05:29:18Z) - PLUE: Language Understanding Evaluation Benchmark for Privacy Policies
in English [77.79102359580702]
We introduce the Privacy Policy Language Understanding Evaluation benchmark, a multi-task benchmark for evaluating the privacy policy language understanding.
We also collect a large corpus of privacy policies to enable privacy policy domain-specific language model pre-training.
We demonstrate that domain-specific continual pre-training offers performance improvements across all tasks.
arXiv Detail & Related papers (2022-12-20T05:58:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.