Generative AI Models for Different Steps in Architectural Design: A Literature Review
- URL: http://arxiv.org/abs/2404.01335v2
- Date: Wed, 23 Oct 2024 12:38:40 GMT
- Title: Generative AI Models for Different Steps in Architectural Design: A Literature Review
- Authors: Chengyuan Li, Tianyu Zhang, Xusheng Du, Ye Zhang, Haoran Xie,
- Abstract summary: It is essential to comprehend the principles and advancements of generative AI models and analyze their relevance in architecture applications.
This paper first provides an overview of generative AI technologies, with a focus on probabilistic diffusion models (DDPMs), 3D generative models, and foundation models.
We subdivide the architectural design process into six steps and review related research projects in each step from 2020 to the present.
- Score: 14.910709576423576
- License:
- Abstract: Recent advances in generative artificial intelligence (AI) technologies have been significantly driven by models such as generative adversarial networks (GANs), variational autoencoders (VAEs), and denoising diffusion probabilistic models (DDPMs). Although architects recognize the potential of generative AI in design, personal barriers often restrict their access to the latest technological developments, thereby causing the application of generative AI in architectural design to lag behind. Therefore, it is essential to comprehend the principles and advancements of generative AI models and analyze their relevance in architecture applications. This paper first provides an overview of generative AI technologies, with a focus on probabilistic diffusion models (DDPMs), 3D generative models, and foundation models, highlighting their recent developments and main application scenarios. Then, the paper explains how the abovementioned models could be utilized in architecture. We subdivide the architectural design process into six steps and review related research projects in each step from 2020 to the present. Lastly, this paper discusses potential future directions for applying generative AI in the architectural design steps. This research can help architects quickly understand the development and latest progress of generative AI and contribute to the further development of intelligent architecture.
Related papers
- Data Analysis in the Era of Generative AI [56.44807642944589]
This paper explores the potential of AI-powered tools to reshape data analysis, focusing on design considerations and challenges.
We explore how the emergence of large language and multimodal models offers new opportunities to enhance various stages of data analysis workflow.
We then examine human-centered design principles that facilitate intuitive interactions, build user trust, and streamline the AI-assisted analysis workflow across multiple apps.
arXiv Detail & Related papers (2024-09-27T06:31:03Z) - Brain-inspired Artificial Intelligence: A Comprehensive Review [15.964784631512414]
Review explores the diverse design inspirations that have shaped modern AI models, i.e., brain-inspired artificial intelligence (BIAI)
We present a classification framework that categorizes BIAI approaches into physical structure-inspired and human behavior-inspired models.
We examine the real-world applications where different BIAI models excel, highlighting their practical benefits and deployment challenges.
arXiv Detail & Related papers (2024-08-27T06:49:50Z) - Generative Artificial Intelligence: A Systematic Review and Applications [7.729155237285151]
This paper documents the systematic review and analysis of recent advancements and techniques in Generative AI.
The major impact that generative AI has made to date, has been in language generation with the development of large language models.
The paper ends with a discussion of Responsible AI principles, and the necessary ethical considerations for the sustainability and growth of these generative models.
arXiv Detail & Related papers (2024-05-17T18:03:59Z) - Generative AI Agent for Next-Generation MIMO Design: Fundamentals, Challenges, and Vision [76.4345564864002]
Next-generation multiple input multiple output (MIMO) is expected to be intelligent and scalable.
We propose the concept of the generative AI agent, which is capable of generating tailored and specialized contents.
We present two compelling case studies that demonstrate the effectiveness of leveraging the generative AI agent for performance analysis.
arXiv Detail & Related papers (2024-04-13T02:39:36Z) - Sketch-to-Architecture: Generative AI-aided Architectural Design [20.42779592734634]
We present a novel workflow that utilizes AI models to generate conceptual floorplans and 3D models from simple sketches.
Our work demonstrates the potential of generative AI in the architectural design process, pointing towards a new direction of computer-aided architectural design.
arXiv Detail & Related papers (2024-03-29T14:04:45Z) - On the Challenges and Opportunities in Generative AI [135.2754367149689]
We argue that current large-scale generative AI models do not sufficiently address several fundamental issues that hinder their widespread adoption across domains.
In this work, we aim to identify key unresolved challenges in modern generative AI paradigms that should be tackled to further enhance their capabilities, versatility, and reliability.
arXiv Detail & Related papers (2024-02-28T15:19:33Z) - State of the Art on Diffusion Models for Visual Computing [191.6168813012954]
This report introduces the basic mathematical concepts of diffusion models, implementation details and design choices of the popular Stable Diffusion model.
We also give a comprehensive overview of the rapidly growing literature on diffusion-based generation and editing.
We discuss available datasets, metrics, open challenges, and social implications.
arXiv Detail & Related papers (2023-10-11T05:32:29Z) - AI-Generated Images as Data Source: The Dawn of Synthetic Era [61.879821573066216]
generative AI has unlocked the potential to create synthetic images that closely resemble real-world photographs.
This paper explores the innovative concept of harnessing these AI-generated images as new data sources.
In contrast to real data, AI-generated data exhibit remarkable advantages, including unmatched abundance and scalability.
arXiv Detail & Related papers (2023-10-03T06:55:19Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
Recent advances in machine learning and AI are disrupting technological innovation, product development, and society as a whole.
AI has contributed less to fundamental science in part because large data sets of high-quality data for scientific practice and model discovery are more difficult to access.
Here we explore and investigate aspects of an AI-driven, automated, closed-loop approach to scientific discovery.
arXiv Detail & Related papers (2023-07-09T21:16:56Z) - Automating Computational Design with Generative AI [0.5919433278490629]
We explain how the underlying diffusion-models work and propose novel refinement approaches to improve semantic encoding and generation quality.
In several experiments we show that we can improve validity of generated floor plans from 6% to 90%.
arXiv Detail & Related papers (2023-07-05T10:07:50Z) - A Reference Architecture for Designing Foundation Model based Systems [28.826700360670515]
There is a broad consensus that foundations models will be the fundamental building blocks for future AI systems.
incorporating foundations models into AI systems raises significant concerns about responsible and safe AI.
The paper proposes a pattern-oriented reference architecture for designing responsible foundation-model-based systems.
arXiv Detail & Related papers (2023-04-13T05:01:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.