Detection of Temporality at Discourse Level on Financial News by Combining Natural Language Processing and Machine Learning
- URL: http://arxiv.org/abs/2404.01337v1
- Date: Sat, 30 Mar 2024 16:40:10 GMT
- Title: Detection of Temporality at Discourse Level on Financial News by Combining Natural Language Processing and Machine Learning
- Authors: Silvia García-Méndez, Francisco de Arriba-Pérez, Ana Barros-Vila, Francisco J. González-Castaño,
- Abstract summary: Finance-related news such as Bloomberg News, CNN Business and Forbes are valuable sources of real data for market screening systems.
We propose a novel system to detect the temporality of finance-related news at discourse level.
We have tested our system on a labelled dataset of finance-related news annotated by researchers with knowledge in the field.
- Score: 8.504685056067144
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Finance-related news such as Bloomberg News, CNN Business and Forbes are valuable sources of real data for market screening systems. In news, an expert shares opinions beyond plain technical analyses that include context such as political, sociological and cultural factors. In the same text, the expert often discusses the performance of different assets. Some key statements are mere descriptions of past events while others are predictions. Therefore, understanding the temporality of the key statements in a text is essential to separate context information from valuable predictions. We propose a novel system to detect the temporality of finance-related news at discourse level that combines Natural Language Processing and Machine Learning techniques, and exploits sophisticated features such as syntactic and semantic dependencies. More specifically, we seek to extract the dominant tenses of the main statements, which may be either explicit or implicit. We have tested our system on a labelled dataset of finance-related news annotated by researchers with knowledge in the field. Experimental results reveal a high detection precision compared to an alternative rule-based baseline approach. Ultimately, this research contributes to the state-of-the-art of market screening by identifying predictive knowledge for financial decision making.
Related papers
- Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
"Context is Key" (CiK) is a time series forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context.
We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters.
Our experiments highlight the importance of incorporating contextual information, demonstrate surprising performance when using LLM-based forecasting models, and also reveal some of their critical shortcomings.
arXiv Detail & Related papers (2024-10-24T17:56:08Z) - Automatic detection of relevant information, predictions and forecasts in financial news through topic modelling with Latent Dirichlet Allocation [9.059679096341474]
We focus on the analysis of financial news to identify relevant text and, within that text, forecasts and predictions.
We propose a novel Natural Language Processing (NLP) system to assist investors in the detection of relevant financial events.
arXiv Detail & Related papers (2024-03-30T17:49:34Z) - Targeted aspect-based emotion analysis to detect opportunities and precaution in financial Twitter messages [8.504685056067144]
We propose a novel Targeted Aspect-Based Emotion Analysis (TABEA) system that can individually discern the financial emotions (positive and negative forecasts) on the different stock market assets in the same tweet.
It is based on Natural Language Processing (NLP) techniques and Machine Learning streaming algorithms.
It achieves over 90% precision for the target emotions, financial opportunity, and precaution on Twitter.
arXiv Detail & Related papers (2024-03-30T16:46:25Z) - Detection of financial opportunities in micro-blogging data with a stacked classification system [6.817247544942709]
We propose a novel system to detect positive predictions in tweets.
Specifically, we seek a high detection precision to present a financial operator a substantial amount of such tweets.
We achieve it with a three-layer stacked Machine Learning classification system.
arXiv Detail & Related papers (2024-03-29T12:23:44Z) - AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework [48.3060010653088]
We release AlphaFin datasets, combining traditional research datasets, real-time financial data, and handwritten chain-of-thought (CoT) data.
We then use AlphaFin datasets to benchmark a state-of-the-art method, called Stock-Chain, for effectively tackling the financial analysis task.
arXiv Detail & Related papers (2024-03-19T09:45:33Z) - Prompt-and-Align: Prompt-Based Social Alignment for Few-Shot Fake News
Detection [50.07850264495737]
"Prompt-and-Align" (P&A) is a novel prompt-based paradigm for few-shot fake news detection.
We show that P&A sets new states-of-the-art for few-shot fake news detection performance by significant margins.
arXiv Detail & Related papers (2023-09-28T13:19:43Z) - Textual Entailment Recognition with Semantic Features from Empirical
Text Representation [60.31047947815282]
A text entails a hypothesis if and only if the true value of the hypothesis follows the text.
In this paper, we propose a novel approach to identifying the textual entailment relationship between text and hypothesis.
We employ an element-wise Manhattan distance vector-based feature that can identify the semantic entailment relationship between the text-hypothesis pair.
arXiv Detail & Related papers (2022-10-18T10:03:51Z) - Citation Trajectory Prediction via Publication Influence Representation
Using Temporal Knowledge Graph [52.07771598974385]
Existing approaches mainly rely on mining temporal and graph data from academic articles.
Our framework is composed of three modules: difference-preserved graph embedding, fine-grained influence representation, and learning-based trajectory calculation.
Experiments are conducted on both the APS academic dataset and our contributed AIPatent dataset.
arXiv Detail & Related papers (2022-10-02T07:43:26Z) - Financial data analysis application via multi-strategy text processing [0.2741266294612776]
This paper mainly focuses on the stock trading data and news about China A-share companies.
We present our efforts and plans in deep learning financial text processing application scenarios using natural language processing (NLP) and knowledge graph (KG) technologies.
arXiv Detail & Related papers (2022-04-25T01:56:36Z) - Text analysis in financial disclosures [0.0]
Most of the information in a firm's financial disclosures is in unstructured text.
Researchers have started analyzing text content in disclosures recently.
This work contributes to disclosure analysis methods by highlighting the limitations of the current focus on sentiment metrics.
arXiv Detail & Related papers (2021-01-06T17:45:40Z) - Improving Machine Reading Comprehension with Contextualized Commonsense
Knowledge [62.46091695615262]
We aim to extract commonsense knowledge to improve machine reading comprehension.
We propose to represent relations implicitly by situating structured knowledge in a context.
We employ a teacher-student paradigm to inject multiple types of contextualized knowledge into a student machine reader.
arXiv Detail & Related papers (2020-09-12T17:20:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.