AETTA: Label-Free Accuracy Estimation for Test-Time Adaptation
- URL: http://arxiv.org/abs/2404.01351v1
- Date: Mon, 1 Apr 2024 04:21:49 GMT
- Title: AETTA: Label-Free Accuracy Estimation for Test-Time Adaptation
- Authors: Taeckyung Lee, Sorn Chottananurak, Taesik Gong, Sung-Ju Lee,
- Abstract summary: Test-time adaptation (TTA) has emerged as a viable solution to adapt pre-trained models to domain shifts using unlabeled test data.
We propose AETTA, a label-free accuracy estimation algorithm for TTA.
We show that AETTA shows an average of 19.8%p more accurate estimation compared with the baselines.
- Score: 7.079932622432037
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Test-time adaptation (TTA) has emerged as a viable solution to adapt pre-trained models to domain shifts using unlabeled test data. However, TTA faces challenges of adaptation failures due to its reliance on blind adaptation to unknown test samples in dynamic scenarios. Traditional methods for out-of-distribution performance estimation are limited by unrealistic assumptions in the TTA context, such as requiring labeled data or re-training models. To address this issue, we propose AETTA, a label-free accuracy estimation algorithm for TTA. We propose the prediction disagreement as the accuracy estimate, calculated by comparing the target model prediction with dropout inferences. We then improve the prediction disagreement to extend the applicability of AETTA under adaptation failures. Our extensive evaluation with four baselines and six TTA methods demonstrates that AETTA shows an average of 19.8%p more accurate estimation compared with the baselines. We further demonstrate the effectiveness of accuracy estimation with a model recovery case study, showcasing the practicality of our model recovery based on accuracy estimation. The source code is available at https://github.com/taeckyung/AETTA.
Related papers
- Test-time Adaptation Meets Image Enhancement: Improving Accuracy via Uncertainty-aware Logit Switching [7.837009376353597]
Test-time Adaptation(TTA) has been well studied because of its practicality.
We incorporate a new perspective on enhancing the input image into TTA methods to reduce the prediction's uncertainty.
We show that Test-time Enhancer and Adaptation(TECA) reduces prediction's uncertainty and increases accuracy of TTA methods.
arXiv Detail & Related papers (2024-03-26T06:40:03Z) - Uncertainty-Calibrated Test-Time Model Adaptation without Forgetting [55.17761802332469]
Test-time adaptation (TTA) seeks to tackle potential distribution shifts between training and test data by adapting a given model w.r.t. any test sample.
Prior methods perform backpropagation for each test sample, resulting in unbearable optimization costs to many applications.
We propose an Efficient Anti-Forgetting Test-Time Adaptation (EATA) method which develops an active sample selection criterion to identify reliable and non-redundant samples.
arXiv Detail & Related papers (2024-03-18T05:49:45Z) - Persistent Test-time Adaptation in Recurring Testing Scenarios [12.024233973321756]
Current test-time adaptation (TTA) approaches aim to adapt a machine learning model to environments that change continuously.
Yet, it is unclear whether TTA methods can maintain their adaptability over prolonged periods.
We propose persistent TTA (PeTTA) which senses when the model is diverging towards collapse and adjusts the adaptation strategy.
arXiv Detail & Related papers (2023-11-30T02:24:44Z) - A Comprehensive Survey on Test-Time Adaptation under Distribution Shifts [143.14128737978342]
Test-time adaptation, an emerging paradigm, has the potential to adapt a pre-trained model to unlabeled data during testing, before making predictions.
Recent progress in this paradigm highlights the significant benefits of utilizing unlabeled data for training self-adapted models prior to inference.
arXiv Detail & Related papers (2023-03-27T16:32:21Z) - DELTA: degradation-free fully test-time adaptation [59.74287982885375]
We find that two unfavorable defects are concealed in the prevalent adaptation methodologies like test-time batch normalization (BN) and self-learning.
First, we reveal that the normalization statistics in test-time BN are completely affected by the currently received test samples, resulting in inaccurate estimates.
Second, we show that during test-time adaptation, the parameter update is biased towards some dominant classes.
arXiv Detail & Related papers (2023-01-30T15:54:00Z) - Robust Continual Test-time Adaptation: Instance-aware BN and
Prediction-balanced Memory [58.72445309519892]
We present a new test-time adaptation scheme that is robust against non-i.i.d. test data streams.
Our novelty is mainly two-fold: (a) Instance-Aware Batch Normalization (IABN) that corrects normalization for out-of-distribution samples, and (b) Prediction-balanced Reservoir Sampling (PBRS) that simulates i.i.d. data stream from non-i.i.d. stream in a class-balanced manner.
arXiv Detail & Related papers (2022-08-10T03:05:46Z) - Estimating Model Performance under Domain Shifts with Class-Specific
Confidence Scores [25.162667593654206]
We introduce class-wise calibration within the framework of performance estimation for imbalanced datasets.
We conduct experiments on four tasks and find the proposed modifications consistently improve the estimation accuracy for imbalanced datasets.
arXiv Detail & Related papers (2022-07-20T15:04:32Z) - CAFA: Class-Aware Feature Alignment for Test-Time Adaptation [50.26963784271912]
Test-time adaptation (TTA) aims to address this challenge by adapting a model to unlabeled data at test time.
We propose a simple yet effective feature alignment loss, termed as Class-Aware Feature Alignment (CAFA), which simultaneously encourages a model to learn target representations in a class-discriminative manner.
arXiv Detail & Related papers (2022-06-01T03:02:07Z) - Efficient Test-Time Model Adaptation without Forgetting [60.36499845014649]
Test-time adaptation seeks to tackle potential distribution shifts between training and testing data.
We propose an active sample selection criterion to identify reliable and non-redundant samples.
We also introduce a Fisher regularizer to constrain important model parameters from drastic changes.
arXiv Detail & Related papers (2022-04-06T06:39:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.