Persistent Test-time Adaptation in Recurring Testing Scenarios
- URL: http://arxiv.org/abs/2311.18193v4
- Date: Sat, 02 Nov 2024 21:18:19 GMT
- Title: Persistent Test-time Adaptation in Recurring Testing Scenarios
- Authors: Trung-Hieu Hoang, Duc Minh Vo, Minh N. Do,
- Abstract summary: Current test-time adaptation (TTA) approaches aim to adapt a machine learning model to environments that change continuously.
Yet, it is unclear whether TTA methods can maintain their adaptability over prolonged periods.
We propose persistent TTA (PeTTA) which senses when the model is diverging towards collapse and adjusts the adaptation strategy.
- Score: 12.024233973321756
- License:
- Abstract: Current test-time adaptation (TTA) approaches aim to adapt a machine learning model to environments that change continuously. Yet, it is unclear whether TTA methods can maintain their adaptability over prolonged periods. To answer this question, we introduce a diagnostic setting - recurring TTA where environments not only change but also recur over time, creating an extensive data stream. This setting allows us to examine the error accumulation of TTA models, in the most basic scenario, when they are regularly exposed to previous testing environments. Furthermore, we simulate a TTA process on a simple yet representative $\epsilon$-perturbed Gaussian Mixture Model Classifier, deriving theoretical insights into the dataset- and algorithm-dependent factors contributing to gradual performance degradation. Our investigation leads us to propose persistent TTA (PeTTA), which senses when the model is diverging towards collapse and adjusts the adaptation strategy, striking a balance between the dual objectives of adaptation and model collapse prevention. The supreme stability of PeTTA over existing approaches, in the face of lifelong TTA scenarios, has been demonstrated over comprehensive experiments on various benchmarks. Our project page is available at https://hthieu166.github.io/petta.
Related papers
- ETAGE: Enhanced Test Time Adaptation with Integrated Entropy and Gradient Norms for Robust Model Performance [18.055032898349438]
Test time adaptation (TTA) equips deep learning models to handle unseen test data that deviates from the training distribution.
We introduce ETAGE, a refined TTA method that integrates entropy minimization with gradient norms and PLPD.
Our method prioritizes samples that are less likely to cause instability by combining high entropy with high gradient norms out of adaptation.
arXiv Detail & Related papers (2024-09-14T01:25:52Z) - Towards Real-World Test-Time Adaptation: Tri-Net Self-Training with
Balanced Normalization [52.03927261909813]
Existing works mainly consider real-world test-time adaptation under non-i.i.d. data stream and continual domain shift.
We argue failure of state-of-the-art methods is first caused by indiscriminately adapting normalization layers to imbalanced testing data.
The final TTA model, termed as TRIBE, is built upon a tri-net architecture with balanced batchnorm layers.
arXiv Detail & Related papers (2023-09-26T14:06:26Z) - RDumb: A simple approach that questions our progress in continual test-time adaptation [12.374649969346441]
Test-Time Adaptation (TTA) allows to update pre-trained models to changing data distributions at deployment time.
Recent work proposed and applied methods for continual adaptation over long timescales.
We find that eventually all but one state-of-the-art methods collapse and perform worse than a non-adapting model.
arXiv Detail & Related papers (2023-06-08T17:52:34Z) - Universal Test-time Adaptation through Weight Ensembling, Diversity
Weighting, and Prior Correction [3.5139431332194198]
Test-time adaptation (TTA) continues to update the model after deployment, leveraging the current test data.
We identify and highlight several challenges a self-training based method has to deal with.
To prevent the model from becoming biased, we leverage a dataset and model-agnostic certainty and diversity weighting.
arXiv Detail & Related papers (2023-06-01T13:16:10Z) - Towards Stable Test-Time Adaptation in Dynamic Wild World [60.98073673220025]
Test-time adaptation (TTA) has shown to be effective at tackling distribution shifts between training and testing data by adapting a given model on test samples.
Online model updating of TTA may be unstable and this is often a key obstacle preventing existing TTA methods from being deployed in the real world.
arXiv Detail & Related papers (2023-02-24T02:03:41Z) - DELTA: degradation-free fully test-time adaptation [59.74287982885375]
We find that two unfavorable defects are concealed in the prevalent adaptation methodologies like test-time batch normalization (BN) and self-learning.
First, we reveal that the normalization statistics in test-time BN are completely affected by the currently received test samples, resulting in inaccurate estimates.
Second, we show that during test-time adaptation, the parameter update is biased towards some dominant classes.
arXiv Detail & Related papers (2023-01-30T15:54:00Z) - Test-time Adaptation in the Dynamic World with Compound Domain Knowledge
Management [75.86903206636741]
Test-time adaptation (TTA) allows the model to adapt itself to novel environments and improve its performance during test time.
Several works for TTA have shown promising adaptation performances in continuously changing environments.
This paper first presents a robust TTA framework with compound domain knowledge management.
We then devise novel regularization which modulates the adaptation rates using domain-similarity between the source and the current target domain.
arXiv Detail & Related papers (2022-12-16T09:02:01Z) - Robust Continual Test-time Adaptation: Instance-aware BN and
Prediction-balanced Memory [58.72445309519892]
We present a new test-time adaptation scheme that is robust against non-i.i.d. test data streams.
Our novelty is mainly two-fold: (a) Instance-Aware Batch Normalization (IABN) that corrects normalization for out-of-distribution samples, and (b) Prediction-balanced Reservoir Sampling (PBRS) that simulates i.i.d. data stream from non-i.i.d. stream in a class-balanced manner.
arXiv Detail & Related papers (2022-08-10T03:05:46Z) - Efficient Test-Time Model Adaptation without Forgetting [60.36499845014649]
Test-time adaptation seeks to tackle potential distribution shifts between training and testing data.
We propose an active sample selection criterion to identify reliable and non-redundant samples.
We also introduce a Fisher regularizer to constrain important model parameters from drastic changes.
arXiv Detail & Related papers (2022-04-06T06:39:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.