論文の概要: Bigger is not Always Better: Scaling Properties of Latent Diffusion Models
- arxiv url: http://arxiv.org/abs/2404.01367v1
- Date: Mon, 1 Apr 2024 17:59:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-03 20:47:06.259973
- Title: Bigger is not Always Better: Scaling Properties of Latent Diffusion Models
- Title(参考訳): Biggerは必ずしも良くない - 潜伏拡散モデルのスケーリング特性
- Authors: Kangfu Mei, Zhengzhong Tu, Mauricio Delbracio, Hossein Talebi, Vishal M. Patel, Peyman Milanfar,
- Abstract要約: 遅延拡散モデル (LDM) のスケーリング特性について, サンプリング効率に着目して検討した。
モデルサイズがサンプリング効率にどのように影響するかを,様々なサンプリングステップで詳細に調査する。
予測予算の下で運用する場合、より小さなモデルは、高品質な結果を生み出す上で、より大きな等価性を上回ることがよくあります。
- 参考スコア(独自算出の注目度): 46.52780730073693
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the scaling properties of latent diffusion models (LDMs) with an emphasis on their sampling efficiency. While improved network architecture and inference algorithms have shown to effectively boost sampling efficiency of diffusion models, the role of model size -- a critical determinant of sampling efficiency -- has not been thoroughly examined. Through empirical analysis of established text-to-image diffusion models, we conduct an in-depth investigation into how model size influences sampling efficiency across varying sampling steps. Our findings unveil a surprising trend: when operating under a given inference budget, smaller models frequently outperform their larger equivalents in generating high-quality results. Moreover, we extend our study to demonstrate the generalizability of the these findings by applying various diffusion samplers, exploring diverse downstream tasks, evaluating post-distilled models, as well as comparing performance relative to training compute. These findings open up new pathways for the development of LDM scaling strategies which can be employed to enhance generative capabilities within limited inference budgets.
- Abstract(参考訳): 遅延拡散モデル (LDM) のスケーリング特性について, サンプリング効率に着目して検討した。
改良されたネットワークアーキテクチャと推論アルゴリズムは、拡散モデルのサンプリング効率を効果的に向上させることが示されているが、サンプリング効率の重要な決定要因であるモデルサイズの役割は、十分に検討されていない。
確立されたテキスト・画像拡散モデルの実証分析を通じて,モデルサイズがサンプリング効率に与える影響を,様々なサンプリングステップで詳細に調査する。
予測予算の下で運用する場合、より小さなモデルは、高品質な結果を生み出す上で、より大きな等価性を上回ることがよくあります。
さらに,本研究は,種々の拡散サンプルに適用し,多様な下流タスクを探索し,蒸留後モデルの評価を行い,また,トレーニング計算と比較することにより,これらの知見の一般化性を示すために拡張された。
これらの知見は, 限られた推論予算内での生成能力向上に活用可能な, LDMスケーリング戦略開発のための新たな経路を開拓する。
関連論文リスト
- Provable Statistical Rates for Consistency Diffusion Models [87.28777947976573]
最先端の性能にもかかわらず、拡散モデルは、多くのステップが伴うため、遅いサンプル生成で知られている。
本稿では, 整合性モデルに関する最初の統計理論に寄与し, 分散不整合最小化問題としてトレーニングを定式化している。
論文 参考訳(メタデータ) (2024-06-23T20:34:18Z) - Diffusion Spectral Representation for Reinforcement Learning [17.701625371409644]
本稿では,表現学習の観点からの強化学習に拡散モデルの柔軟性を活用することを提案する。
拡散モデルとエネルギーベースモデルとの接続を利用して拡散スペクトル表現(Diff-SR)を開発する。
Diff-SRは、拡散モデルからのサンプリングの難易度と推論コストを明示的に回避しつつ、効率的なポリシー最適化と実用的なアルゴリズムを実現する方法を示す。
論文 参考訳(メタデータ) (2024-06-23T14:24:14Z) - Neural Flow Diffusion Models: Learnable Forward Process for Improved Diffusion Modelling [2.1779479916071067]
より広い範囲のプロセスをサポートすることで拡散モデルを強化する新しいフレームワークを提案する。
また,前処理を学習するための新しいパラメータ化手法を提案する。
結果はNFDMの汎用性と幅広い応用の可能性を評価する。
論文 参考訳(メタデータ) (2024-04-19T15:10:54Z) - An Overview of Diffusion Models: Applications, Guided Generation, Statistical Rates and Optimization [59.63880337156392]
拡散モデルはコンピュータビジョン、オーディオ、強化学習、計算生物学において大きな成功を収めた。
経験的成功にもかかわらず、拡散モデルの理論は非常に限定的である。
本稿では,前向きな理論や拡散モデルの手法を刺激する理論的露光について述べる。
論文 参考訳(メタデータ) (2024-04-11T14:07:25Z) - MG-TSD: Multi-Granularity Time Series Diffusion Models with Guided Learning Process [26.661721555671626]
本稿では,最先端の予測性能を実現する新しい多粒度時系列(MG-TSD)モデルを提案する。
われわれのアプローチは外部データに頼らず、様々な領域にまたがって汎用的で適用可能である。
論文 参考訳(メタデータ) (2024-03-09T01:15:03Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
モデルに基づく強化学習のサンプル効率を改善するために、潜在変数モデルが学習、計画、探索をいかに促進するかは理論上、実証上、不明である。
状態-作用値関数に対する潜在変数モデルの表現ビューを提供する。これは、抽出可能な変分学習アルゴリズムと楽観主義/悲観主義の原理の効果的な実装の両方を可能にする。
特に,潜伏変数モデルのカーネル埋め込みを組み込んだUPB探索を用いた計算効率の良い計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-17T00:26:31Z) - A Survey on Generative Diffusion Model [75.93774014861978]
拡散モデルは、深層生成モデルの新たなクラスである。
時間を要する反復生成過程や高次元ユークリッド空間への閉じ込めなど、いくつかの制限がある。
本調査では,拡散モデルの向上を目的とした高度な手法を多数提示する。
論文 参考訳(メタデータ) (2022-09-06T16:56:21Z) - How Much is Enough? A Study on Diffusion Times in Score-based Generative
Models [76.76860707897413]
現在のベストプラクティスは、フォワードダイナミクスが既知の単純なノイズ分布に十分に近づくことを確実にするために大きなTを提唱している。
本稿では, 理想とシミュレーションされたフォワードダイナミクスのギャップを埋めるために補助モデルを用いて, 標準的な逆拡散過程を導出する方法について述べる。
論文 参考訳(メタデータ) (2022-06-10T15:09:46Z) - The Evolution of Out-of-Distribution Robustness Throughout Fine-Tuning [25.85044477227461]
このベースラインに対するアウト・オブ・ディストリビューションデータより正確であるモデルは「有効ロバスト性」を示す。
より大規模なデータセットで事前トレーニングされたモデルは、収束時に消滅するトレーニング中に効果的な堅牢性を示す。
本稿では, 最先端システムに効率的なロバスト性を拡張し, 最先端モデルの分布外精度を向上させるためのいくつかの戦略について論じる。
論文 参考訳(メタデータ) (2021-06-30T06:21:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。