On Strong Bounds for Trotter and Zeno Product Formulas with Bosonic Applications
- URL: http://arxiv.org/abs/2404.01422v3
- Date: Mon, 22 Jul 2024 12:07:51 GMT
- Title: On Strong Bounds for Trotter and Zeno Product Formulas with Bosonic Applications
- Authors: Tim Möbus,
- Abstract summary: We discuss assumptions under which quantitative bounds can be proven in the strong operator topology on Banach spaces.
We provide natural bosonic examples including the Ornstein-Uhlenbeck semigroup and multi-photon driven dissipation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Trotter product formula and the quantum Zeno effect are both indispensable tools for constructing time-evolutions using experimentally feasible building blocks. In this work, we discuss assumptions under which quantitative bounds can be proven in the strong operator topology on Banach spaces and provide natural bosonic examples. Specially, we assume the existence of a continuously embedded Banach space, which relatively bounds the involved generators and creates an invariant subspace of the limiting semigroup with a stable restriction. The slightly stronger assumption of admissible subspaces is well-recognized in the realm of hyperbolic evolution systems (time-dependent semigroups), to which the results are extended. By assuming access to a hierarchy of continuously embedded Banach spaces, Suzuki-higher-order bounds can be demonstrated. In bosonic applications, these embedded Banach spaces naturally arise through the number operator, leading to a diverse set of examples encompassing notable instances such as the Ornstein-Uhlenbeck semigroup and multi-photon driven dissipation used in bosonic error correction.
Related papers
- Strong quantum nonlocality: Unextendible biseparability beyond unextendible product basis [0.0]
An unextendible biseparable basis (UBB) is a set of pure biseparable states which span a subspace of a given space.
We show that there exists a UBB which can demonstrate the phenomenon of strong quantum nonlocality.
arXiv Detail & Related papers (2024-04-08T21:33:17Z) - On reconstruction of states from evolution induced by quantum dynamical
semigroups perturbed by covariant measures [50.24983453990065]
We show the ability to restore states of quantum systems from evolution induced by quantum dynamical semigroups perturbed by covariant measures.
Our procedure describes reconstruction of quantum states transmitted via quantum channels and as a particular example can be applied to reconstruction of photonic states transmitted via optical fibers.
arXiv Detail & Related papers (2023-12-02T09:56:00Z) - Generalization of Gisin's Theorem to Quantum Fields [0.0]
We show that any pure state of the field which contains entanglement between two groups of separated modes violates some Clauser-Horne inequality.
We also show that our generalization of Gisin's theorem holds for the case of states on non-separable Hilbert spaces.
arXiv Detail & Related papers (2023-08-28T22:08:42Z) - Quantum-Dynamical Semigroups and the Church of the Larger Hilbert Space [0.0]
We investigate Stinespring dilations of quantum-dynamical semigroups.
In particular this characterizes the generators of quantum-dynamical semigroups via Stinespring dilations.
arXiv Detail & Related papers (2022-11-15T17:59:31Z) - Continuous percolation in a Hilbert space for a large system of qubits [58.720142291102135]
The percolation transition is defined through the appearance of the infinite cluster.
We show that the exponentially increasing dimensionality of the Hilbert space makes its covering by finite-size hyperspheres inefficient.
Our approach to the percolation transition in compact metric spaces may prove useful for its rigorous treatment in other contexts.
arXiv Detail & Related papers (2022-10-15T13:53:21Z) - Solving the Bose-Hubbard model in new ways [0.0]
We introduce a new method for analysing the Bose-Hubbard model for an array of bosons with nearest neighbor interactions.
It is based on a number-theoretic implementation of the creation and annihilation operators that constitute the model.
We provide a rigorous computer assisted proof of quantum phase transitions in finite systems of this type.
arXiv Detail & Related papers (2021-06-17T08:41:37Z) - Scaling limits of lattice quantum fields by wavelets [62.997667081978825]
The renormalization group is considered as an inductive system of scaling maps between lattice field algebras.
We show that the inductive limit of free lattice ground states exists and the limit state extends to the familiar massive continuum free field.
arXiv Detail & Related papers (2020-10-21T16:30:06Z) - Models of zero-range interaction for the bosonic trimer at unitarity [91.3755431537592]
We present the construction of quantum Hamiltonians for a three-body system consisting of identical bosons mutually coupled by a two-body interaction of zero range.
For a large part of the presentation, infinite scattering length will be considered.
arXiv Detail & Related papers (2020-06-03T17:54:43Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z) - Operator-algebraic renormalization and wavelets [62.997667081978825]
We construct the continuum free field as the scaling limit of Hamiltonian lattice systems using wavelet theory.
A renormalization group step is determined by the scaling equation identifying lattice observables with the continuum field smeared by compactly supported wavelets.
arXiv Detail & Related papers (2020-02-04T18:04:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.