Non-periodic Boundary Conditions for Euler Class and Dynamical Signatures of Obstruction
- URL: http://arxiv.org/abs/2507.22874v1
- Date: Wed, 30 Jul 2025 17:49:19 GMT
- Title: Non-periodic Boundary Conditions for Euler Class and Dynamical Signatures of Obstruction
- Authors: Osama A. Alsaiari, Adrien Bouhon, Robert-Jan Slager, F. Nur Ünal,
- Abstract summary: We systematically investigate the nuances of the relation between the non-Bravais lattice configurations and the Brillouin zone boundary conditions (BZBCs) for any number of dimensions.<n>Our work presents a general framework to study the role of non-trivial boundary conditions and obstructions on multi-gap topology that can be employed for arbitrary number bands or in higher dimensions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While the landscape of free-fermion phases has drastically been expanded in the last decades, recently novel multi-gap topological phases were proposed where groups of bands can acquire new invariants such as Euler class. As in conventional single-gap topologies, obstruction plays an inherent role that so far has only been incidentally addressed. We here systematically investigate the nuances of the relation between the non-Bravais lattice configurations and the Brillouin zone boundary conditions (BZBCs) for any number of dimensions. Clarifying the nomenclature, we provide a general periodictization recipe to obtain a gauge with an almost Brillouin-zone-periodic Bloch Hamiltonian both generally and upon imposing a reality condition on Hamiltonians for Euler class. Focusing on three-band $\mathcal{C}_2$ symmetric Euler systems in two dimensions as a guiding example, we present a procedure to enumerate the possible lattice configurations, and thus the unique BZBCs possibilities. We establish a comprehensive classification for the identified BZBC patterns according to the parity constraints they impose on the Euler invariant, highlighting how it extends to more bands and higher dimensions. Moreover, by building upon previous work utilizing Hopf maps, we illustrate physical consequences of non-trivial BZBCs in the quench dynamics of non-Bravais lattice Euler systems, reflecting the parity of the Euler invariant. We numerically confirm our results and corresponding observable signatures, and discuss possible experimental implementations. Our work presents a general framework to study the role of non-trivial boundary conditions and obstructions on multi-gap topology that can be employed for arbitrary number bands or in higher dimensions.
Related papers
- Topological crystals and soliton lattices in a Gross-Neveu model with Hilbert-space fragmentation [41.94295877935867]
We explore the finite-density phase diagram of the single-flavour Gross-Neveu-Wilson (GNW) model.<n>We find a sequence of inhomogeneous ground states that arise through a real-space version of the mechanism of Hilbert-space fragmentation.
arXiv Detail & Related papers (2025-06-23T14:19:35Z) - Topological nature of edge states for one-dimensional systems without symmetry protection [46.87902365052209]
We numerically verify and analytically prove a winding number invariant that correctly predicts the number of edge states in one-dimensional, nearest-neighbor (between unit cells)<n>Our winding number is invariant under unitary or similarity transforms.
arXiv Detail & Related papers (2024-12-13T19:44:54Z) - Gapless Floquet topology [40.2428948628001]
We study the existence of topological edge zero- and pi-modes despite the lack of bulk gaps in the quasienergy spectrum.
We numerically study the effect of interactions, which give a finite lifetime to the edge modes in the thermodynamic limit with the decay rate consistent with Fermi's Golden Rule.
arXiv Detail & Related papers (2024-11-04T19:05:28Z) - Non-chiral non-Bloch invariants and topological phase diagram in non-unitary quantum dynamics without chiral symmetry [26.179241616332387]
We identify the non-Bloch topological phase diagram of a one-dimensional (1D) non-Hermitian system without chiral symmetry.
We find that such topological invariants can distinguish topologically distinct gapped phases.
Our work provides a useful platform to study the interplay among topology, symmetries and the non-Hermiticity.
arXiv Detail & Related papers (2024-07-26T03:29:30Z) - Rigorous lower bound on dynamical exponents in gapless frustration-free systems [0.0]
This work rigorously establishes a universal lower bound $zge2$ for the dynamical exponent in frustration-free quantum many-body systems.<n>Remarkably, our result can be applied to prove new bounds for dynamics of classical processes.
arXiv Detail & Related papers (2024-06-10T16:08:33Z) - On Strong Bounds for Trotter and Zeno Product Formulas with Bosonic Applications [0.0]
We discuss assumptions under which quantitative bounds can be proven in the strong operator topology on Banach spaces.
We provide natural bosonic examples including the Ornstein-Uhlenbeck semigroup and multi-photon driven dissipation.
arXiv Detail & Related papers (2024-04-01T18:57:49Z) - Interferometry of non-Abelian band singularities and Euler class topology [0.0]
We experimentally probe non-Abelian braiding processes and charges in ultracold atomic systems.
We consider a coherent superposition of two bands that can be created by moving atoms through the band singularities.
Our results present a feasible avenue for measuring non-Abelian charges of band nodes and the direct experimental verification of braiding procedures.
arXiv Detail & Related papers (2024-01-03T19:00:01Z) - Continuous percolation in a Hilbert space for a large system of qubits [58.720142291102135]
The percolation transition is defined through the appearance of the infinite cluster.
We show that the exponentially increasing dimensionality of the Hilbert space makes its covering by finite-size hyperspheres inefficient.
Our approach to the percolation transition in compact metric spaces may prove useful for its rigorous treatment in other contexts.
arXiv Detail & Related papers (2022-10-15T13:53:21Z) - Illuminating the bulk-boundary correspondence of a non-Hermitian stub
lattice with Majorana stars [0.0]
We analyze the topological phases of a nonreciprocal hopping model on the stub lattice.
The parity of the total azimuthal winding of the entire Majorana constellation correctly predicts the appearance of edge states between the bulk gaps.
arXiv Detail & Related papers (2021-08-27T16:09:27Z) - Topological Euler class as a dynamical observable in optical lattices [0.0]
We show that the invariant $(xi)$ falls outside conventional symmetry-eigenvalue indicated phases.
We theoretically demonstrate that quenching with non-trivial Euler Hamiltonian results in stable monopole-antimonopole pairs.
Our results provide a basis for exploring new topologies and their interplay with crystalline symmetries in optical lattices beyond paradigmatic Chern insulators.
arXiv Detail & Related papers (2020-05-06T18:00:03Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z) - Operator-algebraic renormalization and wavelets [62.997667081978825]
We construct the continuum free field as the scaling limit of Hamiltonian lattice systems using wavelet theory.
A renormalization group step is determined by the scaling equation identifying lattice observables with the continuum field smeared by compactly supported wavelets.
arXiv Detail & Related papers (2020-02-04T18:04:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.