論文の概要: Prior Frequency Guided Diffusion Model for Limited Angle (LA)-CBCT Reconstruction
- arxiv url: http://arxiv.org/abs/2404.01448v2
- Date: Tue, 9 Apr 2024 03:47:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-10 19:08:08.995913
- Title: Prior Frequency Guided Diffusion Model for Limited Angle (LA)-CBCT Reconstruction
- Title(参考訳): LA-CBCT再建のための先行周波数誘導拡散モデル
- Authors: Jiacheng Xie, Hua-Chieh Shao, Yunxiang Li, You Zhang,
- Abstract要約: コーンビームCT(CBCT)は画像誘導放射線療法に広く用いられている。
LA-CBCT再建は、深刻なアンダーサンプリングアーティファクトに悩まされ、非常に不良な逆問題となる。
LA-CBCT再構成のための拡散モデルに基づく事前周波数誘導拡散モデル(PFGDM)を開発した。
- 参考スコア(独自算出の注目度): 2.960150120524893
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cone-beam computed tomography (CBCT) is widely used in image-guided radiotherapy. Reconstructing CBCTs from limited-angle acquisitions (LA-CBCT) is highly desired for improved imaging efficiency, dose reduction, and better mechanical clearance. LA-CBCT reconstruction, however, suffers from severe under-sampling artifacts, making it a highly ill-posed inverse problem. Diffusion models can generate data/images by reversing a data-noising process through learned data distributions; and can be incorporated as a denoiser/regularizer in LA-CBCT reconstruction. In this study, we developed a diffusion model-based framework, prior frequency-guided diffusion model (PFGDM), for robust and structure-preserving LA-CBCT reconstruction. PFGDM uses a conditioned diffusion model as a regularizer for LA-CBCT reconstruction, and the condition is based on high-frequency information extracted from patient-specific prior CT scans which provides a strong anatomical prior for LA-CBCT reconstruction. Specifically, we developed two variants of PFGDM (PFGDM-A and PFGDM-B) with different conditioning schemes. PFGDM-A applies the high-frequency CT information condition until a pre-optimized iteration step, and drops it afterwards to enable both similar and differing CT/CBCT anatomies to be reconstructed. PFGDM-B, on the other hand, continuously applies the prior CT information condition in every reconstruction step, while with a decaying mechanism, to gradually phase out the reconstruction guidance from the prior CT scans. The two variants of PFGDM were tested and compared with current available LA-CBCT reconstruction solutions, via metrics including PSNR and SSIM. PFGDM outperformed all traditional and diffusion model-based methods. PFGDM reconstructs high-quality LA-CBCTs under very-limited gantry angles, allowing faster and more flexible CBCT scans with dose reductions.
- Abstract(参考訳): コーンビームCT(CBCT)は画像誘導放射線療法に広く用いられている。
リミテッドアングル取得(LA-CBCT)からのCBCTの再構成は、画像効率の向上、線量削減、機械的クリアランスの向上に非常に期待されている。
しかし、LA-CBCT再建は深刻なアンダーサンプリングアーティファクトに悩まされており、非常に不適切な逆問題となっている。
拡散モデルは、学習したデータ分布を通してデータノイズ処理を反転させることでデータ/イメージを生成することができ、LA-CBCT再構成においてデノイザ/レギュラライザとして組み込むことができる。
本研究では,LA-CBCT再構成のための拡散モデルに基づく事前周波数誘導拡散モデル(PFGDM)を開発した。
PFGDMは、LA-CBCT再建の正則化剤として条件付き拡散モデルを使用し、この条件は、LA-CBCT再建に強い解剖学的前駆体を提供する患者特異的CTスキャンから抽出された高周波情報に基づいている。
具体的には,条件の異なるPFGDM(PFGDM-AとPFGDM-B)の2種類を開発した。
PFGDM-Aは、予め最適化された反復段階まで高周波CT情報条件を適用し、その後ドロップして、類似した異なるCT/CBCT解剖の再構築を可能にする。
一方、PFGDM-Bは、各再構成ステップにおいて、崩壊機構を伴って、前回のCTスキャンから徐々に復元指導を段階的に段階的に廃止する。
PFGDMの2つの変種は、PSNRやSSIMといったメトリクスを介して、現在利用可能なLA-CBCT再構成ソリューションと比較された。
PFGDMは従来の拡散モデルに基づく手法よりも優れていた。
PFGDMは、非常に限られたガントリー角度で高品質のLA-CBCTを再構成し、より高速で柔軟なCBCTスキャンを可能にする。
関連論文リスト
- Improving Cone-Beam CT Image Quality with Knowledge Distillation-Enhanced Diffusion Model in Imbalanced Data Settings [6.157230849293829]
毎日のコーンビームCT(CBCT)画像は、治療調整の要点であり、組織密度の精度が低い。
治療中のCBCTデータを最大化し, 疎対ファンビームCTで補完した。
本手法はRTにおけるCBCTスキャンから高画質CT画像を生成する上で有望であることを示す。
論文 参考訳(メタデータ) (2024-09-19T07:56:06Z) - Iterative CT Reconstruction via Latent Variable Optimization of Shallow Diffusion Models [1.4019041243188557]
拡散確率モデルと反復CT再構成を組み合わせた新しいCT再構成法を提案する。
提案手法の有効性を1/10プロジェクションデータのスパースプロジェクションCT再構成を用いて実証した。
論文 参考訳(メタデータ) (2024-08-06T12:55:17Z) - CoCPF: Coordinate-based Continuous Projection Field for Ill-Posed Inverse Problem in Imaging [78.734927709231]
スパース・ビュー・コンピュート・トモグラフィー(SVCT)の再構成は,スパース・サンプリングによるCT画像の取得を目的としている。
暗黙的な神経表現(INR)技術は、不備のため、その分野に「かなりの穴」(すなわち、未モデル化空間)を残し、準最適結果をもたらす可能性がある。
SVCT再構成のためのホールフリー表現場を構築することを目的としたコーディネート型連続射影場(CoCPF)を提案する。
論文 参考訳(メタデータ) (2024-06-21T08:38:30Z) - DPER: Diffusion Prior Driven Neural Representation for Limited Angle and Sparse View CT Reconstruction [45.00528216648563]
Diffusion Prior Driven Neural Representation (DPER) は、異常に不適切なCT再構成逆問題に対処するために設計された、教師なしのフレームワークである。
DPERは、半二次分割法(HQS)アルゴリズムを採用し、逆問題からデータ忠実度とサブプロブレム前の分布に分解する。
LACTにおけるDPERの性能評価と2つの公開データセットを用いた超SVCT再構成に関する総合的な実験を行った。
論文 参考訳(メタデータ) (2024-04-27T12:55:13Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
改良された深層学習手法は、画像のノイズを除去する能力を示しているが、正確な地上の真実を必要とする。
畳み込みニューラルネットワーク(CNN)のトレーニングに基礎的真理を必要としないLDCTのための新しい自己教師型フレームワークを提案する。
数値および実験結果から,Sparse View を用いた N2I の再構成精度は低下しており,提案手法は異なる範囲のサンプリング角度で画像品質を向上する。
論文 参考訳(メタデータ) (2023-12-19T22:40:51Z) - Solving Low-Dose CT Reconstruction via GAN with Local Coherence [2.325977856241404]
本稿では,局所コヒーレンスを向上したGANを用いた新しい手法を提案する。
提案手法は, 近接画像の局所的コヒーレンスを光学的流れにより捕捉し, 構築した画像の精度と安定性を著しく向上させる。
論文 参考訳(メタデータ) (2023-09-24T08:55:42Z) - Contrastive Diffusion Model with Auxiliary Guidance for Coarse-to-Fine
PET Reconstruction [62.29541106695824]
本稿では, 粗い予測モジュール (CPM) と反復的修正モジュール (IRM) から構成される粗大なPET再構成フレームワークを提案する。
計算オーバーヘッドの大部分をCPMに委譲することで,本手法のサンプリング速度を大幅に向上させることができる。
2つの追加戦略、すなわち補助的な誘導戦略と対照的な拡散戦略が提案され、再構築プロセスに統合される。
論文 参考訳(メタデータ) (2023-08-20T04:10:36Z) - Enhancing Super-Resolution Networks through Realistic Thick-Slice CT Simulation [4.43162303545687]
深層学習に基づく生成モデルでは、低分解能CT画像を長い取得時間なしで高分解能CT画像に変換する可能性があり、薄スライスCT画像では放射線暴露が増大する。
これらの超解法(SR)モデルの適切なトレーニングデータを取得することは困難である。
これまでのSR研究では、薄いスライスCT画像から厚いスライスCT画像をシミュレートして、トレーニングペアを作成していた。
我々は,薄スライスCT画像から厚いCT画像を生成するための単純かつ現実的な手法を導入し,SRアルゴリズムのトレーニングペアの作成を容易にする。
論文 参考訳(メタデータ) (2023-07-02T11:09:08Z) - Optimizing Sampling Patterns for Compressed Sensing MRI with Diffusion
Generative Models [75.52575380824051]
圧縮センシングマルチコイルMRIにおけるサブサンプリングパターンを最適化する学習手法を提案する。
拡散モデルとMRI計測プロセスにより得られた後部平均推定値に基づいて1段階の再構成を行う。
本手法では,効果的なサンプリングパターンの学習には5つのトレーニング画像が必要である。
論文 参考訳(メタデータ) (2023-06-05T22:09:06Z) - Parallel Diffusion Model-based Sparse-view Cone-beam Breast CT [7.712142153700843]
我々は,切欠き拡散確率モデル(DDPM)を,サブボリュームベーススパースビュー胸部CT画像再構成のための並列フレームワークに変換する。
実験により, 本手法は, 標準放射線線量の半分から3分の1の競争再建性能を達成できることが判明した。
論文 参考訳(メタデータ) (2023-03-22T18:55:43Z) - Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy
CT Reconstruction [108.06731611196291]
我々は,多チャンネル畳み込み解析演算子学習法(MCAOL)を開発した。
本研究では,低エネルギー,高エネルギーで減衰画像を共同で再構成する最適化手法を提案する。
論文 参考訳(メタデータ) (2022-03-10T14:22:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。