Efficient 3D Implicit Head Avatar with Mesh-anchored Hash Table Blendshapes
- URL: http://arxiv.org/abs/2404.01543v1
- Date: Tue, 2 Apr 2024 00:55:50 GMT
- Title: Efficient 3D Implicit Head Avatar with Mesh-anchored Hash Table Blendshapes
- Authors: Ziqian Bai, Feitong Tan, Sean Fanello, Rohit Pandey, Mingsong Dou, Shichen Liu, Ping Tan, Yinda Zhang,
- Abstract summary: 3D head avatars built with neural implicit representations have achieved unprecedented levels of photorealism.
We propose a novel fast 3D neural implicit head avatar model that achieves real-time rendering while maintaining fine-grained controllability and high rendering quality.
- Score: 40.35875246929843
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D head avatars built with neural implicit volumetric representations have achieved unprecedented levels of photorealism. However, the computational cost of these methods remains a significant barrier to their widespread adoption, particularly in real-time applications such as virtual reality and teleconferencing. While attempts have been made to develop fast neural rendering approaches for static scenes, these methods cannot be simply employed to support realistic facial expressions, such as in the case of a dynamic facial performance. To address these challenges, we propose a novel fast 3D neural implicit head avatar model that achieves real-time rendering while maintaining fine-grained controllability and high rendering quality. Our key idea lies in the introduction of local hash table blendshapes, which are learned and attached to the vertices of an underlying face parametric model. These per-vertex hash-tables are linearly merged with weights predicted via a CNN, resulting in expression dependent embeddings. Our novel representation enables efficient density and color predictions using a lightweight MLP, which is further accelerated by a hierarchical nearest neighbor search method. Extensive experiments show that our approach runs in real-time while achieving comparable rendering quality to state-of-the-arts and decent results on challenging expressions.
Related papers
- FaceFolds: Meshed Radiance Manifolds for Efficient Volumetric Rendering of Dynamic Faces [21.946327323788275]
3D rendering of dynamic face is a challenging problem.
We present a novel representation that enables high-quality rendering of an actor's dynamic facial performances.
arXiv Detail & Related papers (2024-04-22T00:44:13Z) - DNS SLAM: Dense Neural Semantic-Informed SLAM [92.39687553022605]
DNS SLAM is a novel neural RGB-D semantic SLAM approach featuring a hybrid representation.
Our method integrates multi-view geometry constraints with image-based feature extraction to improve appearance details.
Our experimental results achieve state-of-the-art performance on both synthetic data and real-world data tracking.
arXiv Detail & Related papers (2023-11-30T21:34:44Z) - FLARE: Fast Learning of Animatable and Relightable Mesh Avatars [64.48254296523977]
Our goal is to efficiently learn personalized animatable 3D head avatars from videos that are geometrically accurate, realistic, relightable, and compatible with current rendering systems.
We introduce FLARE, a technique that enables the creation of animatable and relightable avatars from a single monocular video.
arXiv Detail & Related papers (2023-10-26T16:13:00Z) - HAvatar: High-fidelity Head Avatar via Facial Model Conditioned Neural
Radiance Field [44.848368616444446]
We introduce a novel hybrid explicit-implicit 3D representation, Facial Model Conditioned Neural Radiance Field, which integrates the expressiveness of NeRF and the prior information from the parametric template.
By adopting an overall GAN-based architecture using an image-to-image translation network, we achieve high-resolution, realistic and view-consistent synthesis of dynamic head appearance.
arXiv Detail & Related papers (2023-09-29T10:45:22Z) - Deformable 3D Gaussians for High-Fidelity Monocular Dynamic Scene
Reconstruction [29.83056271799794]
Implicit neural representation has paved the way for new approaches to dynamic scene reconstruction and rendering.
We propose a deformable 3D Gaussians Splatting method that reconstructs scenes using 3D Gaussians and learns them in canonical space.
Through a differential Gaussianizer, the deformable 3D Gaussians not only achieve higher rendering quality but also real-time rendering speed.
arXiv Detail & Related papers (2023-09-22T16:04:02Z) - Neural Point-based Volumetric Avatar: Surface-guided Neural Points for
Efficient and Photorealistic Volumetric Head Avatar [62.87222308616711]
We propose fullname (name), a method that adopts the neural point representation and the neural volume rendering process.
Specifically, the neural points are strategically constrained around the surface of the target expression via a high-resolution UV displacement map.
By design, our name is better equipped to handle topologically changing regions and thin structures while also ensuring accurate expression control when animating avatars.
arXiv Detail & Related papers (2023-07-11T03:40:10Z) - HQ3DAvatar: High Quality Controllable 3D Head Avatar [65.70885416855782]
This paper presents a novel approach to building highly photorealistic digital head avatars.
Our method learns a canonical space via an implicit function parameterized by a neural network.
At test time, our method is driven by a monocular RGB video.
arXiv Detail & Related papers (2023-03-25T13:56:33Z) - Efficient Meshy Neural Fields for Animatable Human Avatars [87.68529918184494]
Efficiently digitizing high-fidelity animatable human avatars from videos is a challenging and active research topic.
Recent rendering-based neural representations open a new way for human digitization with their friendly usability and photo-varying reconstruction quality.
We present EMA, a method that Efficiently learns Meshy neural fields to reconstruct animatable human Avatars.
arXiv Detail & Related papers (2023-03-23T00:15:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.