FaceFolds: Meshed Radiance Manifolds for Efficient Volumetric Rendering of Dynamic Faces
- URL: http://arxiv.org/abs/2404.13807v1
- Date: Mon, 22 Apr 2024 00:44:13 GMT
- Title: FaceFolds: Meshed Radiance Manifolds for Efficient Volumetric Rendering of Dynamic Faces
- Authors: Safa C. Medin, Gengyan Li, Ruofei Du, Stephan Garbin, Philip Davidson, Gregory W. Wornell, Thabo Beeler, Abhimitra Meka,
- Abstract summary: 3D rendering of dynamic face is a challenging problem.
We present a novel representation that enables high-quality rendering of an actor's dynamic facial performances.
- Score: 21.946327323788275
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: 3D rendering of dynamic face captures is a challenging problem, and it demands improvements on several fronts$\unicode{x2014}$photorealism, efficiency, compatibility, and configurability. We present a novel representation that enables high-quality volumetric rendering of an actor's dynamic facial performances with minimal compute and memory footprint. It runs natively on commodity graphics soft- and hardware, and allows for a graceful trade-off between quality and efficiency. Our method utilizes recent advances in neural rendering, particularly learning discrete radiance manifolds to sparsely sample the scene to model volumetric effects. We achieve efficient modeling by learning a single set of manifolds for the entire dynamic sequence, while implicitly modeling appearance changes as temporal canonical texture. We export a single layered mesh and view-independent RGBA texture video that is compatible with legacy graphics renderers without additional ML integration. We demonstrate our method by rendering dynamic face captures of real actors in a game engine, at comparable photorealism to state-of-the-art neural rendering techniques at previously unseen frame rates.
Related papers
- HybridNeRF: Efficient Neural Rendering via Adaptive Volumetric Surfaces [71.1071688018433]
Neural radiance fields provide state-of-the-art view synthesis quality but tend to be slow to render.
We propose a method, HybridNeRF, that leverages the strengths of both representations by rendering most objects as surfaces.
We improve error rates by 15-30% while achieving real-time framerates (at least 36 FPS) for virtual-reality resolutions (2Kx2K)
arXiv Detail & Related papers (2023-12-05T22:04:49Z) - FLARE: Fast Learning of Animatable and Relightable Mesh Avatars [64.48254296523977]
Our goal is to efficiently learn personalized animatable 3D head avatars from videos that are geometrically accurate, realistic, relightable, and compatible with current rendering systems.
We introduce FLARE, a technique that enables the creation of animatable and relightable avatars from a single monocular video.
arXiv Detail & Related papers (2023-10-26T16:13:00Z) - Differentiable Blocks World: Qualitative 3D Decomposition by Rendering
Primitives [70.32817882783608]
We present an approach that produces a simple, compact, and actionable 3D world representation by means of 3D primitives.
Unlike existing primitive decomposition methods that rely on 3D input data, our approach operates directly on images.
We show that the resulting textured primitives faithfully reconstruct the input images and accurately model the visible 3D points.
arXiv Detail & Related papers (2023-07-11T17:58:31Z) - Hybrid Neural Rendering for Large-Scale Scenes with Motion Blur [68.24599239479326]
We develop a hybrid neural rendering model that makes image-based representation and neural 3D representation join forces to render high-quality, view-consistent images.
Our model surpasses state-of-the-art point-based methods for novel view synthesis.
arXiv Detail & Related papers (2023-04-25T08:36:33Z) - Human Performance Modeling and Rendering via Neural Animated Mesh [40.25449482006199]
We bridge the traditional mesh with a new class of neural rendering.
In this paper, we present a novel approach for rendering human views from video.
We demonstrate our approach on various platforms, inserting virtual human performances into AR headsets.
arXiv Detail & Related papers (2022-09-18T03:58:00Z) - Inverting Generative Adversarial Renderer for Face Reconstruction [58.45125455811038]
In this work, we introduce a novel Generative Adversa Renderer (GAR)
GAR learns to model the complicated real-world image, instead of relying on the graphics rules, it is capable of producing realistic images.
Our method achieves state-of-the-art performances on multiple face reconstruction.
arXiv Detail & Related papers (2021-05-06T04:16:06Z) - Neural Lumigraph Rendering [33.676795978166375]
State-of-the-art (SOTA) neural volume rendering approaches are slow to train and require minutes of inference (i.e., rendering) time for high image resolutions.
We adopt high-capacity neural scene representations with periodic activations for jointly optimizing an implicit surface and a radiance field of a scene supervised exclusively with posed 2D images.
Our neural rendering pipeline accelerates SOTA neural volume rendering by about two orders of magnitude and our implicit surface representation is unique in allowing us to export a mesh with view-dependent texture information.
arXiv Detail & Related papers (2021-03-22T03:46:05Z) - Intrinsic Autoencoders for Joint Neural Rendering and Intrinsic Image
Decomposition [67.9464567157846]
We propose an autoencoder for joint generation of realistic images from synthetic 3D models while simultaneously decomposing real images into their intrinsic shape and appearance properties.
Our experiments confirm that a joint treatment of rendering and decomposition is indeed beneficial and that our approach outperforms state-of-the-art image-to-image translation baselines both qualitatively and quantitatively.
arXiv Detail & Related papers (2020-06-29T12:53:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.