Leveraging Digital Perceptual Technologies for Remote Perception and Analysis of Human Biomechanical Processes: A Contactless Approach for Workload and Joint Force Assessment
- URL: http://arxiv.org/abs/2404.01576v1
- Date: Tue, 2 Apr 2024 02:12:00 GMT
- Title: Leveraging Digital Perceptual Technologies for Remote Perception and Analysis of Human Biomechanical Processes: A Contactless Approach for Workload and Joint Force Assessment
- Authors: Jesudara Omidokun, Darlington Egeonu, Bochen Jia, Liang Yang,
- Abstract summary: This study presents an innovative computer vision framework designed to analyze human movements in industrial settings.
The framework allows for comprehensive scrutiny of human motion, providing valuable insights into kinematic patterns and kinetic data.
- Score: 4.96669107440958
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study presents an innovative computer vision framework designed to analyze human movements in industrial settings, aiming to enhance biomechanical analysis by integrating seamlessly with existing software. Through a combination of advanced imaging and modeling techniques, the framework allows for comprehensive scrutiny of human motion, providing valuable insights into kinematic patterns and kinetic data. Utilizing Convolutional Neural Networks (CNNs), Direct Linear Transform (DLT), and Long Short-Term Memory (LSTM) networks, the methodology accurately detects key body points, reconstructs 3D landmarks, and generates detailed 3D body meshes. Extensive evaluations across various movements validate the framework's effectiveness, demonstrating comparable results to traditional marker-based models with minor differences in joint angle estimations and precise estimations of weight and height. Statistical analyses consistently support the framework's reliability, with joint angle estimations showing less than a 5-degree difference for hip flexion, elbow flexion, and knee angle methods. Additionally, weight estimation exhibits an average error of less than 6 % for weight and less than 2 % for height when compared to ground-truth values from 10 subjects. The integration of the Biomech-57 landmark skeleton template further enhances the robustness and reinforces the framework's credibility. This framework shows significant promise for meticulous biomechanical analysis in industrial contexts, eliminating the need for cumbersome markers and extending its utility to diverse research domains, including the study of specific exoskeleton devices' impact on facilitating the prompt return of injured workers to their tasks.
Related papers
- Validation of Human Pose Estimation and Human Mesh Recovery for Extracting Clinically Relevant Motion Data from Videos [79.62407455005561]
Marker-less motion capture using human pose estimation produces results in-line with the results of both the IMU and MoCap kinematics.
While there is still room for improvement when it comes to the quality of the data produced, we believe that this compromise is within the room of error.
arXiv Detail & Related papers (2025-03-18T22:18:33Z) - Adaptive Transformer Attention and Multi-Scale Fusion for Spine 3D Segmentation [3.1862885335359095]
This study proposes a 3D semantic segmentation method for the spine based on the improved SwinUNETR.
Aiming at the complex anatomical structure of spinal images, this paper introduces a multi-scale fusion mechanism to enhance the feature extraction capability.
The experimental results show that compared with 3D CNN, 3D U-Net, and 3D U-Net + Transformer, the model of this study has achieved significant improvements.
arXiv Detail & Related papers (2025-03-17T06:27:43Z) - A Data-Centric Revisit of Pre-Trained Vision Models for Robot Learning [67.72413262980272]
Pre-trained vision models (PVMs) are fundamental to modern robotics, yet their optimal configuration remains unclear.
We develop SlotMIM, a method that induces object-centric representations by introducing a semantic bottleneck.
Our approach achieves significant improvements over prior work in image recognition, scene understanding, and robot learning evaluations.
arXiv Detail & Related papers (2025-03-10T06:18:31Z) - Towards Evaluating the Robustness of Visual State Space Models [63.14954591606638]
Vision State Space Models (VSSMs) have demonstrated remarkable performance in visual perception tasks.
However, their robustness under natural and adversarial perturbations remains a critical concern.
We present a comprehensive evaluation of VSSMs' robustness under various perturbation scenarios.
arXiv Detail & Related papers (2024-06-13T17:59:44Z) - 3D WholeBody Pose Estimation based on Semantic Graph Attention Network and Distance Information [2.457872341625575]
A novel Semantic Graph Attention Network can benefit from the ability of self-attention to capture global context.
A Body Part Decoder assists in extracting and refining the information related to specific segments of the body.
A Geometry Loss makes a critical constraint on the structural skeleton of the body, ensuring that the model's predictions adhere to the natural limits of human posture.
arXiv Detail & Related papers (2024-06-03T10:59:00Z) - Benchmarking and Improving Bird's Eye View Perception Robustness in Autonomous Driving [55.93813178692077]
We present RoboBEV, an extensive benchmark suite designed to evaluate the resilience of BEV algorithms.
We assess 33 state-of-the-art BEV-based perception models spanning tasks like detection, map segmentation, depth estimation, and occupancy prediction.
Our experimental results also underline the efficacy of strategies like pre-training and depth-free BEV transformations in enhancing robustness against out-of-distribution data.
arXiv Detail & Related papers (2024-05-27T17:59:39Z) - MS-MANO: Enabling Hand Pose Tracking with Biomechanical Constraints [50.61346764110482]
We integrate a musculoskeletal system with a learnable parametric hand model, MANO, to create MS-MANO.
This model emulates the dynamics of muscles and tendons to drive the skeletal system, imposing physiologically realistic constraints on the resulting torque trajectories.
We also propose a simulation-in-the-loop pose refinement framework, BioPR, that refines the initial estimated pose through a multi-layer perceptron network.
arXiv Detail & Related papers (2024-04-16T02:18:18Z) - 3D Kinematics Estimation from Video with a Biomechanical Model and
Synthetic Training Data [4.130944152992895]
We propose a novel biomechanics-aware network that directly outputs 3D kinematics from two input views.
Our experiments demonstrate that the proposed approach, only trained on synthetic data, outperforms previous state-of-the-art methods.
arXiv Detail & Related papers (2024-02-20T17:33:40Z) - Syn3DWound: A Synthetic Dataset for 3D Wound Bed Analysis [28.960666848416274]
This paper introduces Syn3DWound, an open-source dataset of high-fidelity simulated wounds with 2D and 3D annotations.
We propose a benchmarking framework for automated 3D morphometry analysis and 2D/3D wound segmentation.
arXiv Detail & Related papers (2023-11-27T13:59:53Z) - Robustness and Generalization Performance of Deep Learning Models on
Cyber-Physical Systems: A Comparative Study [71.84852429039881]
Investigation focuses on the models' ability to handle a range of perturbations, such as sensor faults and noise.
We test the generalization and transfer learning capabilities of these models by exposing them to out-of-distribution (OOD) samples.
arXiv Detail & Related papers (2023-06-13T12:43:59Z) - On the Robustness of Aspect-based Sentiment Analysis: Rethinking Model,
Data, and Training [109.9218185711916]
Aspect-based sentiment analysis (ABSA) aims at automatically inferring the specific sentiment polarities toward certain aspects of products or services behind social media texts or reviews.
We propose to enhance the ABSA robustness by systematically rethinking the bottlenecks from all possible angles, including model, data, and training.
arXiv Detail & Related papers (2023-04-19T11:07:43Z) - Kinematic-Structure-Preserved Representation for Unsupervised 3D Human
Pose Estimation [58.72192168935338]
Generalizability of human pose estimation models developed using supervision on large-scale in-studio datasets remains questionable.
We propose a novel kinematic-structure-preserved unsupervised 3D pose estimation framework, which is not restrained by any paired or unpaired weak supervisions.
Our proposed model employs three consecutive differentiable transformations named as forward-kinematics, camera-projection and spatial-map transformation.
arXiv Detail & Related papers (2020-06-24T23:56:33Z) - Dynamic multi-object Gaussian process models: A framework for
data-driven functional modelling of human joints [0.0]
A principled and robust way to combine shape and pose features has been illusive due to three main issues.
We propose a new framework for dynamic multi-object statistical modelling framework for the analysis of human joints.
The framework affords an efficient generative dynamic multi-object modelling platform for biological joints.
arXiv Detail & Related papers (2020-01-22T07:57:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.