3D Kinematics Estimation from Video with a Biomechanical Model and
Synthetic Training Data
- URL: http://arxiv.org/abs/2402.13172v4
- Date: Tue, 5 Mar 2024 12:01:35 GMT
- Title: 3D Kinematics Estimation from Video with a Biomechanical Model and
Synthetic Training Data
- Authors: Zhi-Yi Lin, Bofan Lyu, Judith Cueto Fernandez, Eline van der Kruk,
Ajay Seth, Xucong Zhang
- Abstract summary: We propose a novel biomechanics-aware network that directly outputs 3D kinematics from two input views.
Our experiments demonstrate that the proposed approach, only trained on synthetic data, outperforms previous state-of-the-art methods.
- Score: 4.130944152992895
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Accurate 3D kinematics estimation of human body is crucial in various
applications for human health and mobility, such as rehabilitation, injury
prevention, and diagnosis, as it helps to understand the biomechanical loading
experienced during movement. Conventional marker-based motion capture is
expensive in terms of financial investment, time, and the expertise required.
Moreover, due to the scarcity of datasets with accurate annotations, existing
markerless motion capture methods suffer from challenges including unreliable
2D keypoint detection, limited anatomic accuracy, and low generalization
capability. In this work, we propose a novel biomechanics-aware network that
directly outputs 3D kinematics from two input views with consideration of
biomechanical prior and spatio-temporal information. To train the model, we
create synthetic dataset ODAH with accurate kinematics annotations generated by
aligning the body mesh from the SMPL-X model and a full-body OpenSim skeletal
model. Our extensive experiments demonstrate that the proposed approach, only
trained on synthetic data, outperforms previous state-of-the-art methods when
evaluated across multiple datasets, revealing a promising direction for
enhancing video-based human motion capture
Related papers
- OpenCap markerless motion capture estimation of lower extremity kinematics and dynamics in cycling [0.0]
Markerless motion capture offers several benefits over traditional marker-based systems.
System can directly detect human body landmarks, reducing manual processing and errors associated with marker placement.
This study compares the performance of OpenCap, a markerless motion capture system, with traditional marker-based systems in assessing cycling biomechanics.
arXiv Detail & Related papers (2024-08-20T15:57:40Z) - MS-MANO: Enabling Hand Pose Tracking with Biomechanical Constraints [50.61346764110482]
We integrate a musculoskeletal system with a learnable parametric hand model, MANO, to create MS-MANO.
This model emulates the dynamics of muscles and tendons to drive the skeletal system, imposing physiologically realistic constraints on the resulting torque trajectories.
We also propose a simulation-in-the-loop pose refinement framework, BioPR, that refines the initial estimated pose through a multi-layer perceptron network.
arXiv Detail & Related papers (2024-04-16T02:18:18Z) - Human Kinematics-inspired Skeleton-based Video Anomaly Detection [3.261881784285304]
We introduce a new idea called HKVAD (Human Kinematic-inspired Video Anomaly Detection) for video anomaly detection.
Our method achieves good results with minimal computational resources, validating its effectiveness and potential.
arXiv Detail & Related papers (2023-09-27T13:52:53Z) - Unsupervised 3D Pose Estimation with Non-Rigid Structure-from-Motion
Modeling [83.76377808476039]
We propose a new modeling method for human pose deformations and design an accompanying diffusion-based motion prior.
Inspired by the field of non-rigid structure-from-motion, we divide the task of reconstructing 3D human skeletons in motion into the estimation of a 3D reference skeleton.
A mixed spatial-temporal NRSfMformer is used to simultaneously estimate the 3D reference skeleton and the skeleton deformation of each frame from 2D observations sequence.
arXiv Detail & Related papers (2023-08-18T16:41:57Z) - Towards Single Camera Human 3D-Kinematics [15.559206592078425]
We propose a novel approach for direct 3D human kinematic estimation D3KE from videos using deep neural networks.
Our experiments demonstrate that the proposed end-to-end training is robust and outperforms 2D and 3D markerless motion capture based kinematic estimation pipelines.
arXiv Detail & Related papers (2023-01-13T08:44:09Z) - Skeleton2Humanoid: Animating Simulated Characters for
Physically-plausible Motion In-betweening [59.88594294676711]
Modern deep learning based motion synthesis approaches barely consider the physical plausibility of synthesized motions.
We propose a system Skeleton2Humanoid'' which performs physics-oriented motion correction at test time.
Experiments on the challenging LaFAN1 dataset show our system can outperform prior methods significantly in terms of both physical plausibility and accuracy.
arXiv Detail & Related papers (2022-10-09T16:15:34Z) - Differentiable Dynamics for Articulated 3d Human Motion Reconstruction [29.683633237503116]
We introduce DiffPhy, a differentiable physics-based model for articulated 3d human motion reconstruction from video.
We validate the model by demonstrating that it can accurately reconstruct physically plausible 3d human motion from monocular video.
arXiv Detail & Related papers (2022-05-24T17:58:37Z) - Human Performance Capture from Monocular Video in the Wild [50.34917313325813]
We propose a method capable of capturing the dynamic 3D human shape from a monocular video featuring challenging body poses.
Our method outperforms state-of-the-art methods on an in-the-wild human video dataset 3DPW.
arXiv Detail & Related papers (2021-11-29T16:32:41Z) - Physics-based Human Motion Estimation and Synthesis from Videos [0.0]
We propose a framework for training generative models of physically plausible human motion directly from monocular RGB videos.
At the core of our method is a novel optimization formulation that corrects imperfect image-based pose estimations.
Results show that our physically-corrected motions significantly outperform prior work on pose estimation.
arXiv Detail & Related papers (2021-09-21T01:57:54Z) - Learning Local Recurrent Models for Human Mesh Recovery [50.85467243778406]
We present a new method for video mesh recovery that divides the human mesh into several local parts following the standard skeletal model.
We then model the dynamics of each local part with separate recurrent models, with each model conditioned appropriately based on the known kinematic structure of the human body.
This results in a structure-informed local recurrent learning architecture that can be trained in an end-to-end fashion with available annotations.
arXiv Detail & Related papers (2021-07-27T14:30:33Z) - Contact and Human Dynamics from Monocular Video [73.47466545178396]
Existing deep models predict 2D and 3D kinematic poses from video that are approximately accurate, but contain visible errors.
We present a physics-based method for inferring 3D human motion from video sequences that takes initial 2D and 3D pose estimates as input.
arXiv Detail & Related papers (2020-07-22T21:09:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.