Gen4DS: Workshop on Data Storytelling in an Era of Generative AI
- URL: http://arxiv.org/abs/2404.01622v2
- Date: Sat, 6 Apr 2024 02:12:13 GMT
- Title: Gen4DS: Workshop on Data Storytelling in an Era of Generative AI
- Authors: Xingyu Lan, Leni Yang, Zezhong Wang, Yun Wang, Danqing Shi, Sheelagh Carpendale,
- Abstract summary: rapid development of generative AI has sparked numerous new questions.
How can generative AI facilitate the creation of data stories?
What are the pitfalls and risks of incorporating AI in storytelling?
- Score: 14.595304339780943
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Storytelling is an ancient and precious human ability that has been rejuvenated in the digital age. Over the last decade, there has been a notable surge in the recognition and application of data storytelling, both in academia and industry. Recently, the rapid development of generative AI has brought new opportunities and challenges to this field, sparking numerous new questions. These questions may not necessarily be quickly transformed into papers, but we believe it is necessary to promptly discuss them to help the community better clarify important issues and research agendas for the future. We thus invite you to join our workshop (Gen4DS) to discuss questions such as: How can generative AI facilitate the creation of data stories? How might generative AI alter the workflow of data storytellers? What are the pitfalls and risks of incorporating AI in storytelling? We have designed both paper presentations and interactive activities (including hands-on creation, group discussion pods, and debates on controversial issues) for the workshop. We hope that participants will learn about the latest advances and pioneering work in data storytelling, engage in critical conversations with each other, and have an enjoyable, unforgettable, and meaningful experience at the event.
Related papers
- SARD: A Human-AI Collaborative Story Generation [0.0]
We propose SARD, a drag-and-drop visual interface for generating a multi-chapter story using large language models.
Our evaluation of the usability of SARD and its creativity support shows that while node-based visualization of the narrative may help writers build a mental model, it exerts unnecessary mental overhead to the writer.
We also found that AI generates stories that are less lexically diverse, irrespective of the complexity of the story.
arXiv Detail & Related papers (2024-03-03T17:48:42Z) - Exploring Parent's Needs for Children-Centered AI to Support Preschoolers' Interactive Storytelling and Reading Activities [52.828843153565984]
AI-based storytelling and reading technologies are becoming increasingly ubiquitous in preschoolers' lives.
This paper investigates how they function in practical storytelling and reading scenarios and, how parents, the most critical stakeholders, experience and perceive them.
Our findings suggest that even though AI-based storytelling and reading technologies provide more immersive and engaging interaction, they still cannot meet parents' expectations due to a series of interactive and algorithmic challenges.
arXiv Detail & Related papers (2024-01-24T20:55:40Z) - Learning from a Generative AI Predecessor -- The Many Motivations for
Interacting with Conversational Agents [23.901805145989208]
Generative conversational AI does not yet have a clear revenue model to address its high cost.
Prior to the emergence of generative AI, we conducted a large-scale quantitative and qualitative analysis to learn what motivated millions of people to engage with one such 'virtual companion,' Microsoft's Zo.
arXiv Detail & Related papers (2023-12-31T03:29:16Z) - Identifying and Mitigating the Security Risks of Generative AI [179.2384121957896]
This paper reports the findings of a workshop held at Google on the dual-use dilemma posed by GenAI.
GenAI can be used just as well by attackers to generate new attacks and increase the velocity and efficacy of existing attacks.
We discuss short-term and long-term goals for the community on this topic.
arXiv Detail & Related papers (2023-08-28T18:51:09Z) - Why is AI not a Panacea for Data Workers? An Interview Study on Human-AI
Collaboration in Data Storytelling [59.08591308749448]
We interviewed eighteen data workers from both industry and academia to learn where and how they would like to collaborate with AI.
Surprisingly, though the participants showed excitement about collaborating with AI, many of them also expressed reluctance and pointed out nuanced reasons.
arXiv Detail & Related papers (2023-04-17T15:30:05Z) - A Comprehensive Survey of AI-Generated Content (AIGC): A History of
Generative AI from GAN to ChatGPT [63.58711128819828]
ChatGPT and other Generative AI (GAI) techniques belong to the category of Artificial Intelligence Generated Content (AIGC)
The goal of AIGC is to make the content creation process more efficient and accessible, allowing for the production of high-quality content at a faster pace.
arXiv Detail & Related papers (2023-03-07T20:36:13Z) - Computational Storytelling and Emotions: A Survey [56.95572957863576]
This survey paper is intended to summarize and contribute to the development of research being conducted on the relationship between stories and emotions.
We believe creativity research is not to replace humans with computers, but to find a way of collaboration between humans and computers to enhance the creativity.
arXiv Detail & Related papers (2022-05-23T00:21:59Z) - A Neural Conversation Generation Model via Equivalent Shared Memory
Investigation [39.922967513749654]
We propose a novel reading and memory framework called Deep Reading Memory Network (DRMN)
DRMN is capable of remembering useful information of similar conversations for improving utterance generation.
We apply our model to two large-scale conversation datasets of justice and e-commerce fields.
arXiv Detail & Related papers (2021-08-20T13:20:14Z) - Inquisitive Question Generation for High Level Text Comprehension [60.21497846332531]
We introduce INQUISITIVE, a dataset of 19K questions that are elicited while a person is reading through a document.
We show that readers engage in a series of pragmatic strategies to seek information.
We evaluate question generation models based on GPT-2 and show that our model is able to generate reasonable questions.
arXiv Detail & Related papers (2020-10-04T19:03:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.