論文の概要: Learning to Control Camera Exposure via Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2404.01636v1
- Date: Tue, 2 Apr 2024 04:53:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-03 17:58:09.517402
- Title: Learning to Control Camera Exposure via Reinforcement Learning
- Title(参考訳): 強化学習によるカメラ露光制御の学習
- Authors: Kyunghyun Lee, Ukcheol Shin, Byeong-Uk Lee,
- Abstract要約: 微調整されたカメラの露出は、しばしば重大な故障と性能劣化を引き起こす。
従来のカメラ露光制御法では、複数の収束ステップと時間を要する。
リアルタイム処理中にカメラ露出を迅速に制御する新しいカメラ露出制御フレームワークを提案する。
- 参考スコア(独自算出の注目度): 8.359692000028891
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Adjusting camera exposure in arbitrary lighting conditions is the first step to ensure the functionality of computer vision applications. Poorly adjusted camera exposure often leads to critical failure and performance degradation. Traditional camera exposure control methods require multiple convergence steps and time-consuming processes, making them unsuitable for dynamic lighting conditions. In this paper, we propose a new camera exposure control framework that rapidly controls camera exposure while performing real-time processing by exploiting deep reinforcement learning. The proposed framework consists of four contributions: 1) a simplified training ground to simulate real-world's diverse and dynamic lighting changes, 2) flickering and image attribute-aware reward design, along with lightweight state design for real-time processing, 3) a static-to-dynamic lighting curriculum to gradually improve the agent's exposure-adjusting capability, and 4) domain randomization techniques to alleviate the limitation of the training ground and achieve seamless generalization in the wild.As a result, our proposed method rapidly reaches a desired exposure level within five steps with real-time processing (1 ms). Also, the acquired images are well-exposed and show superiority in various computer vision tasks, such as feature extraction and object detection.
- Abstract(参考訳): 任意の照明条件下でカメラの露出を調整することは、コンピュータビジョンアプリケーションの機能を保証するための第一歩である。
微調整されたカメラの露出は、しばしば重大な故障と性能劣化を引き起こす。
従来のカメラ露光制御法では、複数の収束ステップと時間を要するため、動的照明条件には適さない。
本稿では,より深い強化学習を生かしてリアルタイム処理を行いながら,カメラ露出を迅速に制御する新しいカメラ露出制御フレームワークを提案する。
提案するフレームワークは,4つのコントリビューションから構成される。
1)現実世界の多様でダイナミックな照明変化をシミュレートするための簡易な訓練場。
2) リアルタイム処理のための軽量な状態設計とともに、フレッカリングと画像属性対応報酬設計を行う。
3) エージェントの露光調整能力を徐々に改善する静的・動的照明カリキュラム。
4) 訓練場の制限を緩和し, 野生でのシームレスな一般化を実現するための領域ランダム化手法により, 提案手法は, リアルタイム処理(1ms)を用いて, 5段階以内で迅速に所望の露出レベルに達することができた。
また、取得した画像はよく公開されており、特徴抽出やオブジェクト検出など、様々なコンピュータビジョンタスクにおいて優位性を示す。
関連論文リスト
- Efficient Camera Exposure Control for Visual Odometry via Deep Reinforcement Learning [10.886819238167286]
本研究は、露光制御のためのエージェントの訓練に深層強化学習フレームワークを用いる。
トレーニングプロセスを容易にするために,軽量なイメージシミュレータを開発した。
VOシステムを強化するために異なるレベルの報酬関数が作成される。
論文 参考訳(メタデータ) (2024-08-30T04:37:52Z) - Unrolled Decomposed Unpaired Learning for Controllable Low-Light Video Enhancement [48.76608212565327]
本稿では,2対の地上真実を使わずに,低照度映像のエンハンスメントを学習する上での取り組みについて述べる。
低照度画像の強調に比べて、空間領域におけるノイズ、露出、コントラストの相互干渉効果により、時間的コヒーレンスの必要性が伴うため、低照度映像の強調は困難である。
本稿では,信号の空間的・時間的関連要因に分解するために,最適化関数を深層ネットワークにアンロールすることで低照度映像の高精細化を実現するUnrolled Decompposed Unpaired Network (UDU-Net)を提案する。
論文 参考訳(メタデータ) (2024-08-22T11:45:11Z) - Dimma: Semi-supervised Low Light Image Enhancement with Adaptive Dimming [0.728258471592763]
自然色を維持しながら低照度画像を強調することは、カメラ処理のバリエーションによって難しい問題である。
そこで我々はDimmaを提案する。Dimmaは、画像対の小さなセットを利用して、任意のカメラと整合する半教師付きアプローチである。
そこで我々は,照明の違いに基づいて,シーンの歪み色を生成する畳み込み混合密度ネットワークを導入することで実現した。
論文 参考訳(メタデータ) (2023-10-14T17:59:46Z) - Joint Video Multi-Frame Interpolation and Deblurring under Unknown
Exposure Time [101.91824315554682]
本研究では,より現実的で挑戦的なタスク – 複数フレームのジョイントビデオと,未知の露光時間下での劣化 – を野心的に目標とする。
我々はまず,入力されたぼやけたフレームから露出認識表現を構築するために,教師付きコントラスト学習の変種を採用する。
次に、プログレッシブ露光適応型畳み込みと動き改善による露出と動きの表現に基づいて、映像再構成ネットワークを構築した。
論文 参考訳(メタデータ) (2023-03-27T09:43:42Z) - High Dynamic Range and Super-Resolution from Raw Image Bursts [52.341483902624006]
本稿では,露光ブラケット付きハンドヘルドカメラで撮影した原写真からの高解像度・高ダイナミックレンジカラー画像の再構成について紹介する。
提案アルゴリズムは,画像復元における最先端の学習手法と比較して,メモリ要求の少ない高速なアルゴリズムである。
実験では、ハンドヘルドカメラで野生で撮影された実際の写真に最大4ドル(約4,800円)の超高解像度な要素で優れた性能を示す。
論文 参考訳(メタデータ) (2022-07-29T13:31:28Z) - CuDi: Curve Distillation for Efficient and Controllable Exposure
Adjustment [86.97592472794724]
そこで我々は, 対や不対のデータを必要とせず, 効率よくかつ制御可能な露光調整のためのCuDi曲線蒸留法を提案する。
提案手法は,ゼロ参照学習と曲線ベースのフレームワークを,実効的な低照度画像強調手法であるゼロDCEから継承する。
提案手法は, 高速で頑健でフレキシブルな性能に優れ, 実シーンにおける最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-07-28T17:53:46Z) - Learning Spatially Varying Pixel Exposures for Motion Deblurring [49.07867902677453]
本研究では,空間的に異なる画素の露光を利用して動きを損なう新しい手法を提案する。
我々の研究は、未来のコンピュータイメージングにおいて、焦点面センサー-プロセッサが果たすべき役割を説明している。
論文 参考訳(メタデータ) (2022-04-14T23:41:49Z) - Burst Imaging for Light-Constrained Structure-From-Motion [4.125187280299246]
低光環境下で得られた画像から3次元再構成を支援する画像処理技術を開発した。
バースト写真に基づく本手法は,短時間露光画像のバースト内における画像登録に直接的手法を用いる。
本手法は,低光環境下でのロボットの動作を可能にするための重要なステップであり,地中鉱山や夜間作業などの環境におけるロボットの動作に応用できる可能性がある。
論文 参考訳(メタデータ) (2021-08-23T02:12:40Z) - Progressive Joint Low-light Enhancement and Noise Removal for Raw Images [10.778200442212334]
モバイル機器の低照度撮像は、比較的小さな開口部を通過する入射光が不足しているため、通常困難である。
そこで我々は,共同照明調整,色強調,遮音を行う低照度画像処理フレームワークを提案する。
我々のフレームワークは、他のカメラモデルに適応する際に、大量のデータを再構成する必要はない。
論文 参考訳(メタデータ) (2021-06-28T16:43:52Z) - Unsupervised Low-light Image Enhancement with Decoupled Networks [103.74355338972123]
我々は、実世界の低照度画像を教師なしで拡張する2段階のGANベースのフレームワークを学習する。
提案手法は,照度向上と雑音低減の両面から,最先端の教師なし画像強調法より優れる。
論文 参考訳(メタデータ) (2020-05-06T13:37:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。