SpiKernel: A Kernel Size Exploration Methodology for Improving Accuracy of the Embedded Spiking Neural Network Systems
- URL: http://arxiv.org/abs/2404.01685v3
- Date: Sun, 08 Dec 2024 08:29:56 GMT
- Title: SpiKernel: A Kernel Size Exploration Methodology for Improving Accuracy of the Embedded Spiking Neural Network Systems
- Authors: Rachmad Vidya Wicaksana Putra, Muhammad Shafique,
- Abstract summary: Spiking Neural Networks (SNNs) can offer ultra-low power/energy consumption for machine learning-based application tasks.
Currently, most of the SNN architectures need a significantly larger model size to achieve higher accuracy.
We propose Spi Kernel, a novel methodology that improves the accuracy of SNNs through kernel size exploration.
- Score: 6.006032394972252
- License:
- Abstract: Spiking Neural Networks (SNNs) can offer ultra-low power/energy consumption for machine learning-based application tasks due to their sparse spike-based operations. Currently, most of the SNN architectures need a significantly larger model size to achieve higher accuracy, which is not suitable for resource-constrained embedded applications. Therefore, developing SNNs that can achieve high accuracy with acceptable memory footprint is highly needed. Toward this, we propose SpiKernel, a novel methodology that improves the accuracy of SNNs through kernel size exploration. Its key steps include (1) investigating the impact of different kernel sizes on the accuracy, (2) devising new sets of kernel sizes, (3) generating SNN architectures using neural architecture search based on the selected kernel sizes, and (4) analyzing the accuracy-memory trade-offs for SNN model selection. The experimental results show that our SpiKernel achieves higher accuracy than state-of-the-art works (i.e., 93.24% for CIFAR10, 70.84% for CIFAR100, and 62% for TinyImageNet) with less than 10M parameters and up to 4.8x speed-up of searching time, thereby making it suitable for embedded applications.
Related papers
- SpikeNAS: A Fast Memory-Aware Neural Architecture Search Framework for Spiking Neural Network-based Autonomous Agents [6.006032394972252]
Spiking Neural Networks offer high accuracy and ultra low-power/energy computation.
SpikeNAS is a novel fast memory-aware neural architecture search framework for SNNs.
Results show that our SpikeNAS improves the searching time and maintains high accuracy as compared to state-of-the-art.
arXiv Detail & Related papers (2024-02-17T16:33:54Z) - Highly Efficient SNNs for High-speed Object Detection [7.3074002563489024]
Experimental results show that our efficient SNN can achieve 118X speedup on GPU with only 1.5MB parameters for object detection tasks.
We further verify our SNN on FPGA platform and the proposed model can achieve 800+FPS object detection with extremely low latency.
arXiv Detail & Related papers (2023-09-27T10:31:12Z) - Flexible Channel Dimensions for Differentiable Architecture Search [50.33956216274694]
We propose a novel differentiable neural architecture search method with an efficient dynamic channel allocation algorithm.
We show that the proposed framework is able to find DNN architectures that are equivalent to previous methods in task accuracy and inference latency.
arXiv Detail & Related papers (2023-06-13T15:21:38Z) - EdgeNeXt: Efficiently Amalgamated CNN-Transformer Architecture for
Mobile Vision Applications [68.35683849098105]
We introduce split depth-wise transpose attention (SDTA) encoder that splits input tensors into multiple channel groups.
Our EdgeNeXt model with 1.3M parameters achieves 71.2% top-1 accuracy on ImageNet-1K.
Our EdgeNeXt model with 5.6M parameters achieves 79.4% top-1 accuracy on ImageNet-1K.
arXiv Detail & Related papers (2022-06-21T17:59:56Z) - tinySNN: Towards Memory- and Energy-Efficient Spiking Neural Networks [14.916996986290902]
Spiking Neural Network (SNN) models are typically favorable as they can offer higher accuracy.
However, employing such models on the resource- and energy-constrained embedded platforms is inefficient.
We present a tinySNN framework that optimize the memory and energy requirements of SNN processing.
arXiv Detail & Related papers (2022-06-17T09:40:40Z) - AutoSNN: Towards Energy-Efficient Spiking Neural Networks [26.288681480713695]
Spiking neural networks (SNNs) mimic information transmission in the brain.
Most previous studies have focused solely on training methods, and the effect of architecture has rarely been studied.
We propose a spike-aware neural architecture search framework called AutoSNN.
arXiv Detail & Related papers (2022-01-30T06:12:59Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
This work presents the development of a hardware accelerator for an SNN, with off-line training, applied to an image recognition task.
The design targets a Xilinx Artix-7 FPGA, using in total around the 40% of the available hardware resources.
It reduces the classification time by three orders of magnitude, with a small 4.5% impact on the accuracy, if compared to its software, full precision counterpart.
arXiv Detail & Related papers (2022-01-18T13:59:22Z) - Sub-bit Neural Networks: Learning to Compress and Accelerate Binary
Neural Networks [72.81092567651395]
Sub-bit Neural Networks (SNNs) are a new type of binary quantization design tailored to compress and accelerate BNNs.
SNNs are trained with a kernel-aware optimization framework, which exploits binary quantization in the fine-grained convolutional kernel space.
Experiments on visual recognition benchmarks and the hardware deployment on FPGA validate the great potentials of SNNs.
arXiv Detail & Related papers (2021-10-18T11:30:29Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
We propose a time estimation framework to decouple the architectural search from the target hardware.
The proposed methodology extracts a set of models from micro- kernel and multi-layer benchmarks and generates a stacked model for mapping and network execution time estimation.
We compare estimation accuracy and fidelity of the generated mixed models, statistical models with the roofline model, and a refined roofline model for evaluation.
arXiv Detail & Related papers (2021-05-07T11:39:05Z) - MS-RANAS: Multi-Scale Resource-Aware Neural Architecture Search [94.80212602202518]
We propose Multi-Scale Resource-Aware Neural Architecture Search (MS-RANAS)
We employ a one-shot architecture search approach in order to obtain a reduced search cost.
We achieve state-of-the-art results in terms of accuracy-speed trade-off.
arXiv Detail & Related papers (2020-09-29T11:56:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.