Ultra-low Latency Adaptive Local Binary Spiking Neural Network with
Accuracy Loss Estimator
- URL: http://arxiv.org/abs/2208.00398v1
- Date: Sun, 31 Jul 2022 09:03:57 GMT
- Title: Ultra-low Latency Adaptive Local Binary Spiking Neural Network with
Accuracy Loss Estimator
- Authors: Changqing Xu, Yijian Pei, Zili Wu, Yi Liu, Yintang Yang
- Abstract summary: We propose an ultra-low latency adaptive local binary spiking neural network (ALBSNN) with accuracy loss estimators.
Experimental results show that this method can reduce storage space by more than 20 % without losing network accuracy.
- Score: 4.554628904670269
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spiking neural network (SNN) is a brain-inspired model which has more
spatio-temporal information processing capacity and computational energy
efficiency. However, with the increasing depth of SNNs, the memory problem
caused by the weights of SNNs has gradually attracted attention. Inspired by
Artificial Neural Networks (ANNs) quantization technology, binarized SNN (BSNN)
is introduced to solve the memory problem. Due to the lack of suitable learning
algorithms, BSNN is usually obtained by ANN-to-SNN conversion, whose accuracy
will be limited by the trained ANNs. In this paper, we propose an ultra-low
latency adaptive local binary spiking neural network (ALBSNN) with accuracy
loss estimators, which dynamically selects the network layers to be binarized
to ensure the accuracy of the network by evaluating the error caused by the
binarized weights during the network learning process. Experimental results
show that this method can reduce storage space by more than 20 % without losing
network accuracy. At the same time, in order to accelerate the training speed
of the network, the global average pooling(GAP) layer is introduced to replace
the fully connected layers by the combination of convolution and pooling, so
that SNNs can use a small number of time steps to obtain better recognition
accuracy. In the extreme case of using only one time step, we still can achieve
92.92 %, 91.63 % ,and 63.54 % testing accuracy on three different datasets,
FashionMNIST, CIFAR-10, and CIFAR-100, respectively.
Related papers
- FTBC: Forward Temporal Bias Correction for Optimizing ANN-SNN Conversion [16.9748086865693]
Spiking Neural Networks (SNNs) offer a promising avenue for energy-efficient computing compared with Artificial Neural Networks (ANNs)
In this work, we introduce a lightweight Forward Temporal Bias (FTBC) technique, aimed at enhancing conversion accuracy without the computational overhead.
We further propose an algorithm for finding the temporal bias only in the forward pass, thus eliminating the computational burden of backpropagation.
arXiv Detail & Related papers (2024-03-27T09:25:20Z) - When Bio-Inspired Computing meets Deep Learning: Low-Latency, Accurate,
& Energy-Efficient Spiking Neural Networks from Artificial Neural Networks [22.721987637571306]
Spiking Neural Networks (SNNs) are demonstrating comparable accuracy to convolutional neural networks (CNN)
ANN-to-SNN conversion has recently gained significant traction in developing deep SNNs with close to state-of-the-art (SOTA) test accuracy on complex image recognition tasks.
We propose a novel ANN-to-SNN conversion framework, that incurs an exponentially lower number of time steps compared to that required in the SOTA conversion approaches.
arXiv Detail & Related papers (2023-12-12T00:10:45Z) - LC-TTFS: Towards Lossless Network Conversion for Spiking Neural Networks
with TTFS Coding [55.64533786293656]
We show that our algorithm can achieve a near-perfect mapping between the activation values of an ANN and the spike times of an SNN on a number of challenging AI tasks.
The study paves the way for deploying ultra-low-power TTFS-based SNNs on power-constrained edge computing platforms.
arXiv Detail & Related papers (2023-10-23T14:26:16Z) - Optimized Potential Initialization for Low-latency Spiking Neural
Networks [21.688402090967497]
Spiking Neural Networks (SNNs) have been attached great importance due to the distinctive properties of low power consumption, biological plausibility, and adversarial robustness.
The most effective way to train deep SNNs is through ANN-to-SNN conversion, which have yielded the best performance in deep network structure and large-scale datasets.
In this paper, we aim to achieve high-performance converted SNNs with extremely low latency (fewer than 32 time-steps)
arXiv Detail & Related papers (2022-02-03T07:15:43Z) - Can Deep Neural Networks be Converted to Ultra Low-Latency Spiking
Neural Networks? [3.2108350580418166]
Spiking neural networks (SNNs) operate via binary spikes distributed over time.
SOTA training strategies for SNNs involve conversion from a non-spiking deep neural network (DNN)
We propose a new training algorithm that accurately captures these distributions, minimizing the error between the DNN and converted SNN.
arXiv Detail & Related papers (2021-12-22T18:47:45Z) - Spatial-Temporal-Fusion BNN: Variational Bayesian Feature Layer [77.78479877473899]
We design a spatial-temporal-fusion BNN for efficiently scaling BNNs to large models.
Compared to vanilla BNNs, our approach can greatly reduce the training time and the number of parameters, which contributes to scale BNNs efficiently.
arXiv Detail & Related papers (2021-12-12T17:13:14Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
Event-based vision sensors encode local pixel-wise brightness changes in streams of events rather than image frames.
Recent progress in object recognition from event-based sensors has come from conversions of deep neural networks.
We propose a hybrid architecture for end-to-end training of deep neural networks for event-based pattern recognition and object detection.
arXiv Detail & Related papers (2021-12-06T23:45:58Z) - Sub-bit Neural Networks: Learning to Compress and Accelerate Binary
Neural Networks [72.81092567651395]
Sub-bit Neural Networks (SNNs) are a new type of binary quantization design tailored to compress and accelerate BNNs.
SNNs are trained with a kernel-aware optimization framework, which exploits binary quantization in the fine-grained convolutional kernel space.
Experiments on visual recognition benchmarks and the hardware deployment on FPGA validate the great potentials of SNNs.
arXiv Detail & Related papers (2021-10-18T11:30:29Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - You Only Spike Once: Improving Energy-Efficient Neuromorphic Inference
to ANN-Level Accuracy [51.861168222799186]
Spiking Neural Networks (SNNs) are a type of neuromorphic, or brain-inspired network.
SNNs are sparse, accessing very few weights, and typically only use addition operations instead of the more power-intensive multiply-and-accumulate operations.
In this work, we aim to overcome the limitations of TTFS-encoded neuromorphic systems.
arXiv Detail & Related papers (2020-06-03T15:55:53Z) - Enabling Deep Spiking Neural Networks with Hybrid Conversion and Spike
Timing Dependent Backpropagation [10.972663738092063]
Spiking Neural Networks (SNNs) operate with asynchronous discrete events (or spikes)
We present a computationally-efficient training technique for deep SNNs.
We achieve top-1 accuracy of 65.19% for ImageNet dataset on SNN with 250 time steps, which is 10X faster compared to converted SNNs with similar accuracy.
arXiv Detail & Related papers (2020-05-04T19:30:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.