HeMeNet: Heterogeneous Multichannel Equivariant Network for Protein Multitask Learning
- URL: http://arxiv.org/abs/2404.01693v1
- Date: Tue, 2 Apr 2024 06:53:45 GMT
- Title: HeMeNet: Heterogeneous Multichannel Equivariant Network for Protein Multitask Learning
- Authors: Rong Han, Wenbing Huang, Lingxiao Luo, Xinyan Han, Jiaming Shen, Zhiqiang Zhang, Jun Zhou, Ting Chen,
- Abstract summary: We propose a neural network model to address multiple tasks jointly upon the input of 3D protein structures.
In particular, we first construct a standard structure-based multi-task benchmark called Protein-MT.
Then, we develop a novel graph neural network for multi-task learning, dubbed Heterogeneous Multichannel Equivariant Network (HeMeNet)
- Score: 33.972536394058004
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding and leveraging the 3D structures of proteins is central to a variety of biological and drug discovery tasks. While deep learning has been applied successfully for structure-based protein function prediction tasks, current methods usually employ distinct training for each task. However, each of the tasks is of small size, and such a single-task strategy hinders the models' performance and generalization ability. As some labeled 3D protein datasets are biologically related, combining multi-source datasets for larger-scale multi-task learning is one way to overcome this problem. In this paper, we propose a neural network model to address multiple tasks jointly upon the input of 3D protein structures. In particular, we first construct a standard structure-based multi-task benchmark called Protein-MT, consisting of 6 biologically relevant tasks, including affinity prediction and property prediction, integrated from 4 public datasets. Then, we develop a novel graph neural network for multi-task learning, dubbed Heterogeneous Multichannel Equivariant Network (HeMeNet), which is E(3) equivariant and able to capture heterogeneous relationships between different atoms. Besides, HeMeNet can achieve task-specific learning via the task-aware readout mechanism. Extensive evaluations on our benchmark verify the effectiveness of multi-task learning, and our model generally surpasses state-of-the-art models.
Related papers
- MAMMAL -- Molecular Aligned Multi-Modal Architecture and Language [0.24434823694833652]
MAMMAL is a versatile multi-task multi-align foundation model that learns from large-scale biological datasets.
We introduce a prompt syntax that supports a wide range of classification, regression, and generation tasks.
We evaluate the model on 11 diverse downstream tasks spanning different steps within a typical drug discovery pipeline.
arXiv Detail & Related papers (2024-10-28T20:45:52Z) - A Multitask Deep Learning Model for Classification and Regression of Hyperspectral Images: Application to the large-scale dataset [44.94304541427113]
We propose a multitask deep learning model to perform multiple classification and regression tasks simultaneously on hyperspectral images.
We validated our approach on a large hyperspectral dataset called TAIGA.
A comprehensive qualitative and quantitative analysis of the results shows that the proposed method significantly outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2024-07-23T11:14:54Z) - RepVF: A Unified Vector Fields Representation for Multi-task 3D Perception [64.80760846124858]
This paper proposes a novel unified representation, RepVF, which harmonizes the representation of various perception tasks.
RepVF characterizes the structure of different targets in the scene through a vector field, enabling a single-head, multi-task learning model.
Building upon RepVF, we introduce RFTR, a network designed to exploit the inherent connections between different tasks.
arXiv Detail & Related papers (2024-07-15T16:25:07Z) - Generative Pretrained Autoregressive Transformer Graph Neural Network
applied to the Analysis and Discovery of Novel Proteins [0.0]
We report a flexible language-model based deep learning strategy, applied here to solve complex forward and inverse problems in protein modeling.
The model is applied to predict secondary structure content (per-residue level and overall content), protein solubility, and sequencing tasks.
We find that adding additional tasks yields emergent synergies that the model exploits in improving overall performance.
arXiv Detail & Related papers (2023-05-07T12:30:24Z) - A Systematic Study of Joint Representation Learning on Protein Sequences
and Structures [38.94729758958265]
Learning effective protein representations is critical in a variety of tasks in biology such as predicting protein functions.
Recent sequence representation learning methods based on Protein Language Models (PLMs) excel in sequence-based tasks, but their direct adaptation to tasks involving protein structures remains a challenge.
Our study undertakes a comprehensive exploration of joint protein representation learning by integrating a state-of-the-art PLM with distinct structure encoders.
arXiv Detail & Related papers (2023-03-11T01:24:10Z) - Integration of Pre-trained Protein Language Models into Geometric Deep
Learning Networks [68.90692290665648]
We integrate knowledge learned by protein language models into several state-of-the-art geometric networks.
Our findings show an overall improvement of 20% over baselines.
Strong evidence indicates that the incorporation of protein language models' knowledge enhances geometric networks' capacity by a significant margin.
arXiv Detail & Related papers (2022-12-07T04:04:04Z) - Highly Scalable Task Grouping for Deep Multi-Task Learning in Prediction
of Epigenetic Events [0.0]
We propose a highly scalable task grouping framework to address negative transfer.
The proposed method exploits the network weights associated with task specific classification heads.
Our results using a dataset consisting of 367 epigenetic profiles demonstrate the effectiveness of the proposed approach.
arXiv Detail & Related papers (2022-09-24T00:39:51Z) - ATOM3D: Tasks On Molecules in Three Dimensions [91.72138447636769]
Deep neural networks have recently gained significant attention.
In this work we present ATOM3D, a collection of both novel and existing datasets spanning several key classes of biomolecules.
We develop three-dimensional molecular learning networks for each of these tasks, finding that they consistently improve performance.
arXiv Detail & Related papers (2020-12-07T20:18:23Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
We introduce a parametrized representation of fixed size, which embeds and then aggregates elements from a given input set according to the optimal transport plan between the set and a trainable reference.
Our approach scales to large datasets and allows end-to-end training of the reference, while also providing a simple unsupervised learning mechanism with small computational cost.
arXiv Detail & Related papers (2020-06-22T08:35:58Z) - Deep Multimodal Neural Architecture Search [178.35131768344246]
We devise a generalized deep multimodal neural architecture search (MMnas) framework for various multimodal learning tasks.
Given multimodal input, we first define a set of primitive operations, and then construct a deep encoder-decoder based unified backbone.
On top of the unified backbone, we attach task-specific heads to tackle different multimodal learning tasks.
arXiv Detail & Related papers (2020-04-25T07:00:32Z) - MTI-Net: Multi-Scale Task Interaction Networks for Multi-Task Learning [82.62433731378455]
We show that tasks with high affinity at a certain scale are not guaranteed to retain this behaviour at other scales.
We propose a novel architecture, namely MTI-Net, that builds upon this finding.
arXiv Detail & Related papers (2020-01-19T21:02:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.