Boosting Visual Recognition in Real-world Degradations via Unsupervised Feature Enhancement Module with Deep Channel Prior
- URL: http://arxiv.org/abs/2404.01703v2
- Date: Sun, 12 May 2024 03:10:41 GMT
- Title: Boosting Visual Recognition in Real-world Degradations via Unsupervised Feature Enhancement Module with Deep Channel Prior
- Authors: Zhanwen Liu, Yuhang Li, Yang Wang, Bolin Gao, Yisheng An, Xiangmo Zhao,
- Abstract summary: Fog, low-light, and motion blur degrade image quality and pose threats to the safety of autonomous driving.
This work proposes a novel Deep Channel Prior (DCP) for degraded visual recognition.
Based on this, a novel plug-and-play Unsupervised Feature Enhancement Module (UFEM) is proposed to achieve unsupervised feature correction.
- Score: 22.323789227447755
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The environmental perception of autonomous vehicles in normal conditions have achieved considerable success in the past decade. However, various unfavourable conditions such as fog, low-light, and motion blur will degrade image quality and pose tremendous threats to the safety of autonomous driving. That is, when applied to degraded images, state-of-the-art visual models often suffer performance decline due to the feature content loss and artifact interference caused by statistical and structural properties disruption of captured images. To address this problem, this work proposes a novel Deep Channel Prior (DCP) for degraded visual recognition. Specifically, we observe that, in the deep representation space of pre-trained models, the channel correlations of degraded features with the same degradation type have uniform distribution even if they have different content and semantics, which can facilitate the mapping relationship learning between degraded and clear representations in high-sparsity feature space. Based on this, a novel plug-and-play Unsupervised Feature Enhancement Module (UFEM) is proposed to achieve unsupervised feature correction, where the multi-adversarial mechanism is introduced in the first stage of UFEM to achieve the latent content restoration and artifact removal in high-sparsity feature space. Then, the generated features are transferred to the second stage for global correlation modulation under the guidance of DCP to obtain high-quality and recognition-friendly features. Evaluations of three tasks and eight benchmark datasets demonstrate that our proposed method can comprehensively improve the performance of pre-trained models in real degradation conditions. The source code is available at https://github.com/liyuhang166/Deep_Channel_Prior
Related papers
- Diff-Restorer: Unleashing Visual Prompts for Diffusion-based Universal Image Restoration [19.87693298262894]
We propose Diff-Restorer, a universal image restoration method based on the diffusion model.
We utilize the pre-trained visual language model to extract visual prompts from degraded images.
We also design a Degradation-aware Decoder to perform structural correction and convert the latent code to the pixel domain.
arXiv Detail & Related papers (2024-07-04T05:01:10Z) - Suppressing Uncertainties in Degradation Estimation for Blind Super-Resolution [31.89605287039615]
The problem of blind image super-resolution aims to recover high-resolution (HR) images from low-resolution (LR) images with unknown degradation modes.
Most existing methods model the image degradation process using blur kernels.
We propose an textbfUncertainty-based degradation representation for blind textbfSuper-textbfResolution framework.
arXiv Detail & Related papers (2024-06-24T08:58:43Z) - DeeDSR: Towards Real-World Image Super-Resolution via Degradation-Aware Stable Diffusion [27.52552274944687]
We introduce a novel two-stage, degradation-aware framework that enhances the diffusion model's ability to recognize content and degradation in low-resolution images.
In the first stage, we employ unsupervised contrastive learning to obtain representations of image degradations.
In the second stage, we integrate a degradation-aware module into a simplified ControlNet, enabling flexible adaptation to various degradations.
arXiv Detail & Related papers (2024-03-31T12:07:04Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
Underwater image enhancement (UIE) is a challenging task due to the complex degradation caused by underwater environments.
Previous methods often idealize the degradation process, and neglect the impact of medium noise and object motion on the distribution of image features.
Our approach utilizes predicted images to dynamically update pseudo-labels, adding a dynamic gradient to optimize the network's gradient space.
arXiv Detail & Related papers (2023-12-12T06:07:21Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - PUGAN: Physical Model-Guided Underwater Image Enhancement Using GAN with
Dual-Discriminators [120.06891448820447]
How to obtain clear and visually pleasant images has become a common concern of people.
The task of underwater image enhancement (UIE) has also emerged as the times require.
In this paper, we propose a physical model-guided GAN model for UIE, referred to as PUGAN.
Our PUGAN outperforms state-of-the-art methods in both qualitative and quantitative metrics.
arXiv Detail & Related papers (2023-06-15T07:41:12Z) - DR2: Diffusion-based Robust Degradation Remover for Blind Face
Restoration [66.01846902242355]
Blind face restoration usually synthesizes degraded low-quality data with a pre-defined degradation model for training.
It is expensive and infeasible to include every type of degradation to cover real-world cases in the training data.
We propose Robust Degradation Remover (DR2) to first transform the degraded image to a coarse but degradation-invariant prediction, then employ an enhancement module to restore the coarse prediction to a high-quality image.
arXiv Detail & Related papers (2023-03-13T06:05:18Z) - Panini-Net: GAN Prior Based Degradation-Aware Feature Interpolation for
Face Restoration [4.244692655670362]
Panini-Net is a degradation-aware feature network for face restoration.
It learns the abstract representations to distinguish various degradations.
It achieves state-of-the-art performance for multi-degradation face restoration and face super-resolution.
arXiv Detail & Related papers (2022-03-16T07:41:07Z) - HDNet: High-resolution Dual-domain Learning for Spectral Compressive
Imaging [138.04956118993934]
We propose a high-resolution dual-domain learning network (HDNet) for HSI reconstruction.
On the one hand, the proposed HR spatial-spectral attention module with its efficient feature fusion provides continuous and fine pixel-level features.
On the other hand, frequency domain learning (FDL) is introduced for HSI reconstruction to narrow the frequency domain discrepancy.
arXiv Detail & Related papers (2022-03-04T06:37:45Z) - Gated Fusion Network for Degraded Image Super Resolution [78.67168802945069]
We propose a dual-branch convolutional neural network to extract base features and recovered features separately.
By decomposing the feature extraction step into two task-independent streams, the dual-branch model can facilitate the training process.
arXiv Detail & Related papers (2020-03-02T13:28:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.