DeeDSR: Towards Real-World Image Super-Resolution via Degradation-Aware Stable Diffusion
- URL: http://arxiv.org/abs/2404.00661v1
- Date: Sun, 31 Mar 2024 12:07:04 GMT
- Title: DeeDSR: Towards Real-World Image Super-Resolution via Degradation-Aware Stable Diffusion
- Authors: Chunyang Bi, Xin Luo, Sheng Shen, Mengxi Zhang, Huanjing Yue, Jingyu Yang,
- Abstract summary: We introduce a novel two-stage, degradation-aware framework that enhances the diffusion model's ability to recognize content and degradation in low-resolution images.
In the first stage, we employ unsupervised contrastive learning to obtain representations of image degradations.
In the second stage, we integrate a degradation-aware module into a simplified ControlNet, enabling flexible adaptation to various degradations.
- Score: 27.52552274944687
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models, known for their powerful generative capabilities, play a crucial role in addressing real-world super-resolution challenges. However, these models often focus on improving local textures while neglecting the impacts of global degradation, which can significantly reduce semantic fidelity and lead to inaccurate reconstructions and suboptimal super-resolution performance. To address this issue, we introduce a novel two-stage, degradation-aware framework that enhances the diffusion model's ability to recognize content and degradation in low-resolution images. In the first stage, we employ unsupervised contrastive learning to obtain representations of image degradations. In the second stage, we integrate a degradation-aware module into a simplified ControlNet, enabling flexible adaptation to various degradations based on the learned representations. Furthermore, we decompose the degradation-aware features into global semantics and local details branches, which are then injected into the diffusion denoising module to modulate the target generation. Our method effectively recovers semantically precise and photorealistic details, particularly under significant degradation conditions, demonstrating state-of-the-art performance across various benchmarks. Codes will be released at https://github.com/bichunyang419/DeeDSR.
Related papers
- Degradation Oriented and Regularized Network for Blind Depth Super-Resolution [48.744290794713905]
In real-world scenarios, captured depth data often suffer from unconventional and unknown degradation due to sensor limitations and complex imaging environments.
We propose the Degradation Oriented and Regularized Network (DORNet), a novel framework designed to adaptively address unknown degradation in real-world scenes.
Our approach begins with the development of a self-supervised degradation learning strategy, which models the degradation representations of low-resolution depth data.
To facilitate effective RGB-D fusion, we further introduce a degradation-oriented feature transformation module that selectively propagates RGB content into the depth data based on the learned degradation priors.
arXiv Detail & Related papers (2024-10-15T14:53:07Z) - Diff-Restorer: Unleashing Visual Prompts for Diffusion-based Universal Image Restoration [19.87693298262894]
We propose Diff-Restorer, a universal image restoration method based on the diffusion model.
We utilize the pre-trained visual language model to extract visual prompts from degraded images.
We also design a Degradation-aware Decoder to perform structural correction and convert the latent code to the pixel domain.
arXiv Detail & Related papers (2024-07-04T05:01:10Z) - Suppressing Uncertainties in Degradation Estimation for Blind Super-Resolution [31.89605287039615]
The problem of blind image super-resolution aims to recover high-resolution (HR) images from low-resolution (LR) images with unknown degradation modes.
Most existing methods model the image degradation process using blur kernels.
We propose an textbfUncertainty-based degradation representation for blind textbfSuper-textbfResolution framework.
arXiv Detail & Related papers (2024-06-24T08:58:43Z) - CasSR: Activating Image Power for Real-World Image Super-Resolution [24.152495730507823]
Cascaded diffusion for Super-Resolution, CasSR, is a novel method designed to produce highly detailed and realistic images.
We develop a cascaded controllable diffusion model that aims to optimize the extraction of information from low-resolution images.
arXiv Detail & Related papers (2024-03-18T03:59:43Z) - Diffusion Models Without Attention [110.5623058129782]
Diffusion State Space Model (DiffuSSM) is an architecture that supplants attention mechanisms with a more scalable state space model backbone.
Our focus on FLOP-efficient architectures in diffusion training marks a significant step forward.
arXiv Detail & Related papers (2023-11-30T05:15:35Z) - SeeSR: Towards Semantics-Aware Real-World Image Super-Resolution [16.815468458589635]
We present a semantics-aware approach to better preserve the semantic fidelity of generative real-world image super-resolution.
First, we train a degradation-aware prompt extractor, which can generate accurate soft and hard semantic prompts even under strong degradation.
The experiments show that our method can reproduce more realistic image details and hold better the semantics.
arXiv Detail & Related papers (2023-11-27T18:11:19Z) - LLDiffusion: Learning Degradation Representations in Diffusion Models
for Low-Light Image Enhancement [118.83316133601319]
Current deep learning methods for low-light image enhancement (LLIE) typically rely on pixel-wise mapping learned from paired data.
We propose a degradation-aware learning scheme for LLIE using diffusion models, which effectively integrates degradation and image priors into the diffusion process.
arXiv Detail & Related papers (2023-07-27T07:22:51Z) - Implicit Diffusion Models for Continuous Super-Resolution [65.45848137914592]
This paper introduces an Implicit Diffusion Model (IDM) for high-fidelity continuous image super-resolution.
IDM integrates an implicit neural representation and a denoising diffusion model in a unified end-to-end framework.
The scaling factor regulates the resolution and accordingly modulates the proportion of the LR information and generated features in the final output.
arXiv Detail & Related papers (2023-03-29T07:02:20Z) - DR2: Diffusion-based Robust Degradation Remover for Blind Face
Restoration [66.01846902242355]
Blind face restoration usually synthesizes degraded low-quality data with a pre-defined degradation model for training.
It is expensive and infeasible to include every type of degradation to cover real-world cases in the training data.
We propose Robust Degradation Remover (DR2) to first transform the degraded image to a coarse but degradation-invariant prediction, then employ an enhancement module to restore the coarse prediction to a high-quality image.
arXiv Detail & Related papers (2023-03-13T06:05:18Z) - Gated Fusion Network for Degraded Image Super Resolution [78.67168802945069]
We propose a dual-branch convolutional neural network to extract base features and recovered features separately.
By decomposing the feature extraction step into two task-independent streams, the dual-branch model can facilitate the training process.
arXiv Detail & Related papers (2020-03-02T13:28:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.