論文の概要: Auditing Large Language Models for Enhanced Text-Based Stereotype Detection and Probing-Based Bias Evaluation
- arxiv url: http://arxiv.org/abs/2404.01768v1
- Date: Tue, 2 Apr 2024 09:31:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-03 17:09:01.470307
- Title: Auditing Large Language Models for Enhanced Text-Based Stereotype Detection and Probing-Based Bias Evaluation
- Title(参考訳): テキストに基づくステレオタイプ検出と探索に基づくバイアス評価のための大規模言語モデルの検討
- Authors: Zekun Wu, Sahan Bulathwela, Maria Perez-Ortiz, Adriano Soares Koshiyama,
- Abstract要約: この研究は、ジェンダー、人種、職業、宗教、ステレオタイプテキストにわたる51,867のインスタンスを含むマルチグラインドステレオタイプデータセットを導入している。
ステレオタイプ検出のためのベースラインを確立することを目的とした、さまざまな機械学習アプローチについて検討する。
本研究では,多言語モデルを用いたテキスト生成タスクにおけるステレオタイプの存在を評価・評価する。
- 参考スコア(独自算出の注目度): 4.908389661988191
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recent advancements in Large Language Models (LLMs) have significantly increased their presence in human-facing Artificial Intelligence (AI) applications. However, LLMs could reproduce and even exacerbate stereotypical outputs from training data. This work introduces the Multi-Grain Stereotype (MGS) dataset, encompassing 51,867 instances across gender, race, profession, religion, and stereotypical text, collected by fusing multiple previously publicly available stereotype detection datasets. We explore different machine learning approaches aimed at establishing baselines for stereotype detection, and fine-tune several language models of various architectures and model sizes, presenting in this work a series of stereotypes classifier models for English text trained on MGS. To understand whether our stereotype detectors capture relevant features (aligning with human common sense) we utilise a variety of explanainable AI tools, including SHAP, LIME, and BertViz, and analyse a series of example cases discussing the results. Finally, we develop a series of stereotype elicitation prompts and evaluate the presence of stereotypes in text generation tasks with popular LLMs, using one of our best performing previously presented stereotypes detectors. Our experiments yielded several key findings: i) Training stereotype detectors in a multi-dimension setting yields better results than training multiple single-dimension classifiers.ii) The integrated MGS Dataset enhances both the in-dataset and cross-dataset generalisation ability of stereotype detectors compared to using the datasets separately. iii) There is a reduction in stereotypes in the content generated by GPT Family LLMs with newer versions.
- Abstract(参考訳): 近年のLarge Language Models (LLMs) の進歩は、人工知能(AI)の応用において、その存在感を著しく高めている。
しかし、LSMはトレーニングデータからステレオタイプ出力を再現し、さらに悪化させることができた。
この研究は、Multi-Grain Stereotype (MGS)データセットを導入し、性別、人種、職業、宗教、ステレオタイプテキストの51,867のインスタンスを包含し、これまでに公開された複数のステレオタイプ検出データセットを融合して収集した。
ステレオタイプ検出のためのベースラインを確立することを目的とした、さまざまな機械学習アプローチを探求し、様々なアーキテクチャとモデルサイズの言語モデルを微調整し、本研究では、MGSで訓練された英語テキストのための一連のステレオタイプ分類モデルを示す。
我々のステレオタイプ検出器が関連する特徴(人間の常識に合わせて)を捉えているかどうかを理解するために、SHAP、LIME、BertVizなど、さまざまな説明可能なAIツールを活用し、その結果を議論する一連の事例を分析します。
最後に,これまでに提示したステレオタイプ検出器の1つを用いて,テキスト生成タスクにおけるステレオタイプの存在を評価・評価する。
実験の結果, 多次元環境下でのステレオタイプ検出器の訓練は, 複数の単次元分類器を訓練するよりも優れた結果が得られることがわかった。
三 GPT ファミリー LLM の新たなバージョンによるコンテンツにステレオタイプが減少していること。
関連論文リスト
- Towards Auditing Large Language Models: Improving Text-based Stereotype
Detection [5.3634450268516565]
i) ジェンダー、人種、職業、宗教のステレオタイプテキストの52,751件を含むマルチグラインステレオタイプデータセットを紹介する。
そこで本研究では,新しいデータセットでトレーニングしたモデルについて,厳密に検証する実験を行った。
実験によると、マルチクラスの設定でモデルをトレーニングすることは、すべてのバイナリの1つよりも優れている。
論文 参考訳(メタデータ) (2023-11-23T17:47:14Z) - Text generation for dataset augmentation in security classification
tasks [55.70844429868403]
本研究では、複数のセキュリティ関連テキスト分類タスクにおいて、このデータギャップを埋めるための自然言語テキストジェネレータの適用性を評価する。
我々は,GPT-3データ拡張戦略において,既知の正のクラスサンプルに厳しい制約がある状況において,大きなメリットを見出した。
論文 参考訳(メタデータ) (2023-10-22T22:25:14Z) - Language Agents for Detecting Implicit Stereotypes in Text-to-image
Models at Scale [45.64096601242646]
テキスト・ツー・イメージモデルにおけるステレオタイプ検出に適した新しいエージェントアーキテクチャを提案する。
複数のオープンテキストデータセットに基づいたステレオタイプ関連ベンチマークを構築した。
これらのモデルは、個人的特性に関する特定のプロンプトに関して、深刻なステレオタイプを示すことが多い。
論文 参考訳(メタデータ) (2023-10-18T08:16:29Z) - Unified Demonstration Retriever for In-Context Learning [56.06473069923567]
Unified Demonstration Retriever (textbfUDR)は、幅広いタスクのデモを検索する単一のモデルである。
我々は,高品質な候補を見つけるための反復的なマイニング戦略を備えたマルチタスクリストワイド・トレーニング・フレームワークを提案する。
13のタスクファミリーと複数のデータドメインにわたる30以上のタスクの実験は、UDRがベースラインを大幅に上回っていることを示している。
論文 参考訳(メタデータ) (2023-05-07T16:07:11Z) - TextMI: Textualize Multimodal Information for Integrating Non-verbal
Cues in Pre-trained Language Models [5.668457303716451]
マルチモーダルな行動分析タスクのための汎用的,競争的なベースラインとして,TextMIを提案する。
我々のアプローチは、モデルの複雑さを著しく減らし、モデルの判断に解釈可能性を追加し、様々なタスクに適用できます。
論文 参考訳(メタデータ) (2023-03-27T17:54:32Z) - ELEVATER: A Benchmark and Toolkit for Evaluating Language-Augmented
Visual Models [102.63817106363597]
ELEVATERは、事前訓練された言語拡張ビジュアルモデルの比較と評価を行う最初のベンチマークである。
20の画像分類データセットと35のオブジェクト検出データセットで構成され、それぞれが外部知識で拡張されている。
研究コミュニティ向けのツールキットと評価プラットフォームをリリースします。
論文 参考訳(メタデータ) (2022-04-19T10:23:42Z) - XDBERT: Distilling Visual Information to BERT from Cross-Modal Systems
to Improve Language Understanding [73.24847320536813]
本研究では,事前学習したマルチモーダル変換器から事前学習した言語エンコーダへの視覚情報の蒸留について検討する。
我々のフレームワークは,NLUの言語重み特性に適応するために学習目標を変更する一方で,視覚言語タスクにおけるクロスモーダルエンコーダの成功にインスパイアされている。
論文 参考訳(メタデータ) (2022-04-15T03:44:00Z) - Reinforcement Guided Multi-Task Learning Framework for Low-Resource
Stereotype Detection [3.7223111129285096]
ステレオタイプ検出」データセットは主に、大規模な事前学習言語モデルに対する診断アプローチを採用している。
信頼できるデータセットに注釈をつけるには、テキストでステレオタイプがどのように現れるかという微妙なニュアンスを正確に理解する必要がある。
我々は「ステレオタイプ検出」における経験的性能を改善するために、データ豊富な隣接タスクの多元性を活用するマルチタスクモデルを提案する。
論文 参考訳(メタデータ) (2022-03-27T17:16:11Z) - Learning Universal Representations from Word to Sentence [89.82415322763475]
この研究は普遍的な表現学習、すなわち一様ベクトル空間における言語単位の異なるレベルへの埋め込みを導入し、探求する。
本稿では, 単語, 句, 文の観点から, 類似したデータセットを構築するためのアプローチを提案する。
適切なトレーニング設定を組み込んだよく訓練されたトランスフォーマーモデルが、効果的に普遍的な表現が得られることを実証的に検証する。
論文 参考訳(メタデータ) (2020-09-10T03:53:18Z) - Analysis of Predictive Coding Models for Phonemic Representation
Learning in Small Datasets [0.0]
本研究では,音素識別タスクにおける2つの予測符号化モデル,自動回帰予測符号化とコントラスト予測符号化の挙動について検討した。
実験の結果, 自己回帰損失と音素識別スコアとの間には, 強い相関関係が認められた。
CPCモデルは、トレーニングデータを渡した後既に急速に収束しており、平均すると、その表現は両方の言語でのAPCよりも優れています。
論文 参考訳(メタデータ) (2020-07-08T15:46:13Z) - DiVA: Diverse Visual Feature Aggregation for Deep Metric Learning [83.48587570246231]
視覚的類似性は多くのコンピュータビジョンアプリケーションにおいて重要な役割を果たす。
ディープ・メトリック・ラーニング(DML)は、そのような類似性を学ぶための強力なフレームワークである。
我々は,概念的に異なるデータ関係を対象とする複数の補完学習タスクを提案し,研究する。
我々は、訓練信号を集約する単一モデルを学び、その結果、強力な一般化と最先端のパフォーマンスが得られる。
論文 参考訳(メタデータ) (2020-04-28T12:26:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。