Unifying Qualitative and Quantitative Safety Verification of DNN-Controlled Systems
- URL: http://arxiv.org/abs/2404.01769v1
- Date: Tue, 2 Apr 2024 09:31:51 GMT
- Title: Unifying Qualitative and Quantitative Safety Verification of DNN-Controlled Systems
- Authors: Dapeng Zhi, Peixin Wang, Si Liu, Luke Ong, Min Zhang,
- Abstract summary: The rapid advance of deep reinforcement learning techniques enables the oversight of safety-critical systems through the utilization of Deep Neural Networks (DNNs)
Most of the existing verification approaches rely on qualitative approaches, predominantly employing reachability analysis.
We propose a novel framework for unifying both qualitative and quantitative safety verification problems.
- Score: 18.049286149364075
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid advance of deep reinforcement learning techniques enables the oversight of safety-critical systems through the utilization of Deep Neural Networks (DNNs). This underscores the pressing need to promptly establish certified safety guarantees for such DNN-controlled systems. Most of the existing verification approaches rely on qualitative approaches, predominantly employing reachability analysis. However, qualitative verification proves inadequate for DNN-controlled systems as their behaviors exhibit stochastic tendencies when operating in open and adversarial environments. In this paper, we propose a novel framework for unifying both qualitative and quantitative safety verification problems of DNN-controlled systems. This is achieved by formulating the verification tasks as the synthesis of valid neural barrier certificates (NBCs). Initially, the framework seeks to establish almost-sure safety guarantees through qualitative verification. In cases where qualitative verification fails, our quantitative verification method is invoked, yielding precise lower and upper bounds on probabilistic safety across both infinite and finite time horizons. To facilitate the synthesis of NBCs, we introduce their $k$-inductive variants. We also devise a simulation-guided approach for training NBCs, aiming to achieve tightness in computing precise certified lower and upper bounds. We prototype our approach into a tool called $\textsf{UniQQ}$ and showcase its efficacy on four classic DNN-controlled systems.
Related papers
- Lyapunov-stable Neural Control for State and Output Feedback: A Novel Formulation [67.63756749551924]
Learning-based neural network (NN) control policies have shown impressive empirical performance in a wide range of tasks in robotics and control.
Lyapunov stability guarantees over the region-of-attraction (ROA) for NN controllers with nonlinear dynamical systems are challenging to obtain.
We demonstrate a new framework for learning NN controllers together with Lyapunov certificates using fast empirical falsification and strategic regularizations.
arXiv Detail & Related papers (2024-04-11T17:49:15Z) - Data-Driven Distributionally Robust Safety Verification Using Barrier Certificates and Conditional Mean Embeddings [0.24578723416255752]
We develop scalable formal verification algorithms without shifting the problem to unrealistic assumptions.
In a pursuit of developing scalable formal verification algorithms without shifting the problem to unrealistic assumptions, we employ the concept of barrier certificates.
We show how to solve the resulting program efficiently using sum-of-squares optimization and a Gaussian process envelope.
arXiv Detail & Related papers (2024-03-15T17:32:02Z) - Compositional Inductive Invariant Based Verification of Neural Network Controlled Systems [11.811233105411976]
This paper introduces a novel approach to NNCS safety verification, leveraging the inductive invariant method.
We present an algorithm capable of automatically verifying the inductiveness of given candidates by automatically inferring the necessary decomposition predicates.
arXiv Detail & Related papers (2023-12-17T23:20:51Z) - VNN: Verification-Friendly Neural Networks with Hard Robustness Guarantees [3.208888890455612]
We propose a novel framework to generate Verification-Friendly Neural Networks (VNNs)
We present a post-training optimization framework to achieve a balance between preserving prediction performance and verification-friendliness.
arXiv Detail & Related papers (2023-12-15T12:39:27Z) - Enumerating Safe Regions in Deep Neural Networks with Provable
Probabilistic Guarantees [86.1362094580439]
We introduce the AllDNN-Verification problem: given a safety property and a DNN, enumerate the set of all the regions of the property input domain which are safe.
Due to the #P-hardness of the problem, we propose an efficient approximation method called epsilon-ProVe.
Our approach exploits a controllable underestimation of the output reachable sets obtained via statistical prediction of tolerance limits.
arXiv Detail & Related papers (2023-08-18T22:30:35Z) - The #DNN-Verification Problem: Counting Unsafe Inputs for Deep Neural
Networks [94.63547069706459]
#DNN-Verification problem involves counting the number of input configurations of a DNN that result in a violation of a safety property.
We propose a novel approach that returns the exact count of violations.
We present experimental results on a set of safety-critical benchmarks.
arXiv Detail & Related papers (2023-01-17T18:32:01Z) - Quantization-aware Interval Bound Propagation for Training Certifiably
Robust Quantized Neural Networks [58.195261590442406]
We study the problem of training and certifying adversarially robust quantized neural networks (QNNs)
Recent work has shown that floating-point neural networks that have been verified to be robust can become vulnerable to adversarial attacks after quantization.
We present quantization-aware interval bound propagation (QA-IBP), a novel method for training robust QNNs.
arXiv Detail & Related papers (2022-11-29T13:32:38Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
We introduce a model-uncertainty-aware reformulation of CBF-based safety-critical controllers.
We then present the pointwise feasibility conditions of the resulting safety controller.
We use these conditions to devise an event-triggered online data collection strategy.
arXiv Detail & Related papers (2022-08-23T05:02:09Z) - Joint Differentiable Optimization and Verification for Certified
Reinforcement Learning [91.93635157885055]
In model-based reinforcement learning for safety-critical control systems, it is important to formally certify system properties.
We propose a framework that jointly conducts reinforcement learning and formal verification.
arXiv Detail & Related papers (2022-01-28T16:53:56Z) - Scalable Synthesis of Verified Controllers in Deep Reinforcement
Learning [0.0]
We propose an automated verification pipeline capable of synthesizing high-quality safety shields.
Our key insight involves separating safety verification from neural controller, using pre-computed verified safety shields to constrain neural controller training.
Experimental results over a range of realistic high-dimensional deep RL benchmarks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2021-04-20T19:30:29Z) - Scalable Quantitative Verification For Deep Neural Networks [44.570783946111334]
We propose a test-driven verification framework for deep neural networks (DNNs)
Our technique performs enough tests until soundness of a formal probabilistic property can be proven.
Our work paves the way for verifying properties of distributions captured by real-world deep neural networks, with provable guarantees.
arXiv Detail & Related papers (2020-02-17T09:53:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.