論文の概要: Improved Text Emotion Prediction Using Combined Valence and Arousal Ordinal Classification
- arxiv url: http://arxiv.org/abs/2404.01805v1
- Date: Tue, 2 Apr 2024 10:06:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-03 16:59:04.358814
- Title: Improved Text Emotion Prediction Using Combined Valence and Arousal Ordinal Classification
- Title(参考訳): 有理値と覚醒順序分類を組み合わせたテキスト感情予測の改良
- Authors: Michael Mitsios, Georgios Vamvoukakis, Georgia Maniati, Nikolaos Ellinas, Georgios Dimitriou, Konstantinos Markopoulos, Panos Kakoulidis, Alexandra Vioni, Myrsini Christidou, Junkwang Oh, Gunu Jho, Inchul Hwang, Georgios Vardaxoglou, Aimilios Chalamandaris, Pirros Tsiakoulis, Spyros Raptis,
- Abstract要約: テキストから感情を分類する手法を導入し,様々な感情の相違点と相違点を認識・区別する。
提案手法は感情予測において高い精度を保ちながら,誤分類の場合の誤りの程度を著しく低減する。
- 参考スコア(独自算出の注目度): 37.823815777259036
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Emotion detection in textual data has received growing interest in recent years, as it is pivotal for developing empathetic human-computer interaction systems. This paper introduces a method for categorizing emotions from text, which acknowledges and differentiates between the diversified similarities and distinctions of various emotions. Initially, we establish a baseline by training a transformer-based model for standard emotion classification, achieving state-of-the-art performance. We argue that not all misclassifications are of the same importance, as there are perceptual similarities among emotional classes. We thus redefine the emotion labeling problem by shifting it from a traditional classification model to an ordinal classification one, where discrete emotions are arranged in a sequential order according to their valence levels. Finally, we propose a method that performs ordinal classification in the two-dimensional emotion space, considering both valence and arousal scales. The results show that our approach not only preserves high accuracy in emotion prediction but also significantly reduces the magnitude of errors in cases of misclassification.
- Abstract(参考訳): 近年,共感的人間とコンピュータのインタラクションシステムの開発において,感情検出が重要な役割を担っている。
本稿では,テキストから感情を分類する手法を紹介し,様々な感情の相違点と相違点を認識・区別する。
最初は、標準的な感情分類のためのトランスフォーマーベースモデルをトレーニングし、最先端のパフォーマンスを達成することでベースラインを確立する。
すべての誤分類が、感情階級間で知覚上の類似点があるため、同じ重要性を持つわけではないと我々は主張する。
そこで,従来の分類モデルから正規分類モデルにシフトすることで,感情のラベル付け問題を再定義する。
最後に,2次元の感情空間において,有声度と覚醒度の両方を考慮した順序分類を行う手法を提案する。
その結果,本手法は感情予測の精度を向上するだけでなく,誤分類の場合の誤りの程度を著しく低減することがわかった。
関連論文リスト
- The Whole Is Bigger Than the Sum of Its Parts: Modeling Individual Annotators to Capture Emotional Variability [7.1394038985662664]
感情表現と知覚はニュアンスがあり、複雑で、非常に主観的なプロセスである。
ほとんどの音声感情認識タスクは、アノテータラベルを基底真理として平均化することでこの問題に対処する。
従来の研究は感情の多様性を捉えるために分布を学習しようとしたが、これらの手法は個々のアノテータに関する情報も失っている。
本研究では,モデル学習中の感情分布の学習を可能にする連続モデル出力から分布を生成する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-08-21T19:24:06Z) - Handling Ambiguity in Emotion: From Out-of-Domain Detection to
Distribution Estimation [45.53789836426869]
感情に対する主観的な認識は、人間の注釈からの矛盾したラベルにつながる。
本稿では,あいまいな感情を扱う3つの方法について検討する。
分類器にラベルを付けない発話を付加クラスとして組み込むことで、他の感情クラスの分類性能が低下することを示す。
また,明快な深層学習を用いた感情分類における不確実性を定量化することにより,不明瞭な感情を伴う発話を領域外サンプルとして検出することを提案する。
論文 参考訳(メタデータ) (2024-02-20T09:53:38Z) - Seeking Subjectivity in Visual Emotion Distribution Learning [93.96205258496697]
視覚感情分析(VEA)は、人々の感情を異なる視覚刺激に向けて予測することを目的としている。
既存の手法では、集団投票プロセスにおいて固有の主観性を無視して、統合されたネットワークにおける視覚的感情分布を予測することが多い。
視覚的感情分布の主観性を調べるために,新しいテキストサブジェクティビティ評価ネットワーク(SAMNet)を提案する。
論文 参考訳(メタデータ) (2022-07-25T02:20:03Z) - The Emotion is Not One-hot Encoding: Learning with Grayscale Label for
Emotion Recognition in Conversation [0.0]
会話における感情認識(ERC)では、過去の文脈を考慮し、現在の発話の感情を予測する。
グレースケールラベルを構築するためのいくつかの手法を導入し、各手法が感情認識性能を向上させることを確認する。
論文 参考訳(メタデータ) (2022-06-15T08:14:42Z) - A Circular-Structured Representation for Visual Emotion Distribution
Learning [82.89776298753661]
視覚的感情分布学習に先立つ知識を活用するために,身近な円形構造表現を提案する。
具体的には、まず感情圏を構築し、その内にある感情状態を統一する。
提案した感情圏では、各感情分布は3つの属性で定義される感情ベクトルで表される。
論文 参考訳(メタデータ) (2021-06-23T14:53:27Z) - Acted vs. Improvised: Domain Adaptation for Elicitation Approaches in
Audio-Visual Emotion Recognition [29.916609743097215]
一般化された感情認識システムの開発における主な課題は、ラベル付きデータの不足とゴールドスタンダード参照の欠如である。
本研究では,感情誘発アプローチをドメイン知識とみなし,感情発話におけるドメイン伝達学習技術を探求する。
論文 参考訳(メタデータ) (2021-04-05T15:59:31Z) - Modality-Transferable Emotion Embeddings for Low-Resource Multimodal
Emotion Recognition [55.44502358463217]
本稿では、上記の問題に対処するため、感情を埋め込んだモダリティ変換可能なモデルを提案する。
我々のモデルは感情カテゴリーのほとんどで最先端のパフォーマンスを達成する。
私たちのモデルは、目に見えない感情に対するゼロショットと少数ショットのシナリオにおいて、既存のベースラインよりも優れています。
論文 参考訳(メタデータ) (2020-09-21T06:10:39Z) - EmoGraph: Capturing Emotion Correlations using Graph Networks [71.53159402053392]
グラフネットワークを通じて異なる感情間の依存関係をキャプチャするEmoGraphを提案する。
EmoGraphは特にマクロF1において、強いベースラインを上回ります。
キャプチャーされた感情相関は、シングルラベルの分類作業にも有用であることを示す実験である。
論文 参考訳(メタデータ) (2020-08-21T08:59:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。