Neuromorphic Split Computing with Wake-Up Radios: Architecture and Design via Digital Twinning
- URL: http://arxiv.org/abs/2404.01815v3
- Date: Mon, 16 Sep 2024 11:08:18 GMT
- Title: Neuromorphic Split Computing with Wake-Up Radios: Architecture and Design via Digital Twinning
- Authors: Jiechen Chen, Sangwoo Park, Petar Popovski, H. Vincent Poor, Osvaldo Simeone,
- Abstract summary: This work proposes a novel architecture that integrates a wake-up radio mechanism within a split computing system consisting of remote, wirelessly connected, NPUs.
A key challenge in the design of a wake-up radio-based neuromorphic split computing system is the selection of thresholds for sensing, wake-up signal detection, and decision making.
- Score: 97.99077847606624
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neuromorphic computing leverages the sparsity of temporal data to reduce processing energy by activating a small subset of neurons and synapses at each time step. When deployed for split computing in edge-based systems, remote neuromorphic processing units (NPUs) can reduce the communication power budget by communicating asynchronously using sparse impulse radio (IR) waveforms. This way, the input signal sparsity translates directly into energy savings both in terms of computation and communication. However, with IR transmission, the main contributor to the overall energy consumption remains the power required to maintain the main radio on. This work proposes a novel architecture that integrates a wake-up radio mechanism within a split computing system consisting of remote, wirelessly connected, NPUs. A key challenge in the design of a wake-up radio-based neuromorphic split computing system is the selection of thresholds for sensing, wake-up signal detection, and decision making. To address this problem, as a second contribution, this work proposes a novel methodology that leverages the use of a digital twin (DT), i.e., a simulator, of the physical system, coupled with a sequential statistical testing approach known as Learn Then Test (LTT) to provide theoretical reliability guarantees. The proposed DT-LTT methodology is broadly applicable to other design problems, and is showcased here for neuromorphic communications. Experimental results validate the design and the analysis, confirming the theoretical reliability guarantees and illustrating trade-offs among reliability, energy consumption, and informativeness of the decisions.
Related papers
- Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
In neuromorphic computing, spiking neural networks (SNNs) perform inference tasks, offering significant efficiency gains for workloads involving sequential data.
Recent advances in hardware and software have demonstrated that embedding a few bits of payload in each spike exchanged between the spiking neurons can further enhance inference accuracy.
This paper investigates a wireless neuromorphic split computing architecture employing multi-level SNNs.
arXiv Detail & Related papers (2024-11-07T14:08:35Z) - Fast and Accurate Cooperative Radio Map Estimation Enabled by GAN [63.90647197249949]
In the 6G era, real-time radio resource monitoring and management are urged to support diverse wireless-empowered applications.
In this paper, we present a cooperative radio map estimation approach enabled by the generative adversarial network (GAN)
arXiv Detail & Related papers (2024-02-05T05:01:28Z) - Causal Semantic Communication for Digital Twins: A Generalizable
Imitation Learning Approach [74.25870052841226]
A digital twin (DT) leverages a virtual representation of the physical world, along with communication (e.g., 6G), computing, and artificial intelligence (AI) technologies to enable many connected intelligence services.
Wireless systems can exploit the paradigm of semantic communication (SC) for facilitating informed decision-making under strict communication constraints.
A novel framework called causal semantic communication (CSC) is proposed for DT-based wireless systems.
arXiv Detail & Related papers (2023-04-25T00:15:00Z) - Label-free timing analysis of SiPM-based modularized detectors with
physics-constrained deep learning [9.234802409391111]
We propose a novel method based on deep learning for timing analysis of modularized detectors.
We mathematically demonstrate the existence of the optimal function desired by the method, and give a systematic algorithm for training and calibration of the model.
arXiv Detail & Related papers (2023-04-24T09:16:31Z) - Neuro-Symbolic Causal Reasoning Meets Signaling Game for Emergent
Semantic Communications [71.63189900803623]
A novel emergent SC system framework is proposed and is composed of a signaling game for emergent language design and a neuro-symbolic (NeSy) artificial intelligence (AI) approach for causal reasoning.
The ESC system is designed to enhance the novel metrics of semantic information, reliability, distortion and similarity.
arXiv Detail & Related papers (2022-10-21T15:33:37Z) - Neuromorphic Integrated Sensing and Communications [28.475406916976247]
We introduce neuromorphic integrated sensing and communications (N-ISAC), a novel solution that enables efficient online data decoding and radar sensing.
N-ISAC leverages a common IR waveform for the dual purpose of conveying digital information and of detecting the presence or absence of a radar target.
A spiking neural network (SNN) is deployed at the receiver to decode digital data and detect the radar target using directly the received signal.
arXiv Detail & Related papers (2022-09-24T00:23:25Z) - Integrate-and-Fire Neurons for Low-Powered Pattern Recognition [0.0]
We introduce a low-powered neuron model called Integrate-and-Fire which exploits the charge and discharge properties of the capacitor.
Using parallel and series RC circuits, we developed a trainable neuron model that can be expressed in a recurrent form.
This paper is the full text of the research, presented at the 20th International Conference on Artificial Intelligence and Soft Computing Web System (ICAISC 2021)
arXiv Detail & Related papers (2021-06-28T12:08:00Z) - End-to-End Learning of Neuromorphic Wireless Systems for Low-Power Edge
Artificial Intelligence [38.518936229794214]
We introduce a novel "all-spike" low-power solution for remote wireless inference that is based on neuromorphic sensing, Impulse Radio (IR), and Spiking Neural Networks (SNNs)
We introduce an end-to-end training procedure that treats the cascade of encoder, channel, and decoder as a probabilistic SNN-based autoencoder that implements Joint Source-Channel Coding (JSCC)
The experiments confirm that the proposed end-to-end neuromorphic edge architecture provides a promising framework for efficient and low-latency remote sensing, communication, and inference.
arXiv Detail & Related papers (2020-09-03T09:10:16Z) - A Compressive Sensing Approach for Federated Learning over Massive MIMO
Communication Systems [82.2513703281725]
Federated learning is a privacy-preserving approach to train a global model at a central server by collaborating with wireless devices.
We present a compressive sensing approach for federated learning over massive multiple-input multiple-output communication systems.
arXiv Detail & Related papers (2020-03-18T05:56:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.