論文の概要: Confidence-aware Reward Optimization for Fine-tuning Text-to-Image Models
- arxiv url: http://arxiv.org/abs/2404.01863v1
- Date: Tue, 2 Apr 2024 11:40:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-03 16:38:36.514276
- Title: Confidence-aware Reward Optimization for Fine-tuning Text-to-Image Models
- Title(参考訳): 微調整テキスト・画像モデルに対する信頼度を考慮したリワード最適化
- Authors: Kyuyoung Kim, Jongheon Jeong, Minyong An, Mohammad Ghavamzadeh, Krishnamurthy Dvijotham, Jinwoo Shin, Kimin Lee,
- Abstract要約: 人間のフィードバックデータに基づいて訓練された報酬関数を持つ微調整テキスト・ツー・イメージモデルは、モデル行動と人間の意図との整合性を実証した。
しかし、そのような報酬モデルによる過度な最適化は、単にプロキシの目的として機能し、微調整されたモデルの性能を損なう可能性がある。
本研究では,テキストプロンプトの集合に対して推定された報酬モデル信頼度に基づいてアライメントを強化する手法であるTextNormを提案する。
- 参考スコア(独自算出の注目度): 85.96013373385057
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fine-tuning text-to-image models with reward functions trained on human feedback data has proven effective for aligning model behavior with human intent. However, excessive optimization with such reward models, which serve as mere proxy objectives, can compromise the performance of fine-tuned models, a phenomenon known as reward overoptimization. To investigate this issue in depth, we introduce the Text-Image Alignment Assessment (TIA2) benchmark, which comprises a diverse collection of text prompts, images, and human annotations. Our evaluation of several state-of-the-art reward models on this benchmark reveals their frequent misalignment with human assessment. We empirically demonstrate that overoptimization occurs notably when a poorly aligned reward model is used as the fine-tuning objective. To address this, we propose TextNorm, a simple method that enhances alignment based on a measure of reward model confidence estimated across a set of semantically contrastive text prompts. We demonstrate that incorporating the confidence-calibrated rewards in fine-tuning effectively reduces overoptimization, resulting in twice as many wins in human evaluation for text-image alignment compared against the baseline reward models.
- Abstract(参考訳): 人間のフィードバックデータに基づいて訓練された報酬関数を持つ微調整テキスト・ツー・イメージモデルは、モデル行動と人間の意図との整合性を実証した。
しかし、そのような報酬モデルによる過度な最適化は、単なるプロキシ目的として機能し、報酬過度最適化(英語版)として知られる、微調整されたモデルの性能を損なう可能性がある。
この問題を深く研究するために,テキストプロンプト,画像,人間のアノテーションの多種多様なコレクションからなるテキスト画像アライメントアセスメント(TIA2)ベンチマークを導入する。
本ベンチマークでは, 現状の報奨モデルに対する評価結果から, 人的評価との相違が頻発していることが判明した。
我々は、微調整目的として不整合報酬モデルを用いる場合、特に過度な最適化が生じることを実証的に実証した。
そこで本研究では,テキストプロンプトの集合から推定した報酬モデル信頼度に基づいてアライメントを強化するシンプルな方法であるTextNormを提案する。
細調整に信頼性校正報酬を組み込むことで過度な最適化を効果的に減らし、ベースラインの報酬モデルと比較してテキスト画像のアライメントに対する人間による評価の2倍の勝利をもたらすことを示した。
関連論文リスト
- PrefPaint: Aligning Image Inpainting Diffusion Model with Human Preference [62.72779589895124]
画像インペイントのための拡散モデルと人間の審美基準との整合性を、強化学習フレームワークを用いて初めて試みる。
我々は、人間の好みを付加した約51,000枚の画像からなるデータセットで報酬モデルを訓練する。
画像拡張や3次元再構成などの下流タスクの塗装比較実験により, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2024-10-29T11:49:39Z) - Evaluating Robustness of Reward Models for Mathematical Reasoning [14.97819343313859]
本稿では,報酬モデルの信頼性評価のための新しい設計を提案し,これを検証するためにRewardMATHを構築した。
RewardMATHのスコアは、最適化されたポリシーの結果と強く相関し、効果的に報酬過大評価を推定する。
論文 参考訳(メタデータ) (2024-10-02T16:39:58Z) - Elephant in the Room: Unveiling the Impact of Reward Model Quality in Alignment [50.21842377409232]
重要な役割の報酬モデルが整列するにもかかわらず、以前の作品は一貫してパフォーマンスを見落としている。
本研究は、まず、広く使われている嗜好データセットHH-RLHFの品質を調査し、クリーンバージョンCHH-RLHFをキュレートする。
本稿では,CHH-RLHFに基づいて,従来のアライメント作業で使用する幅広い報酬モデルの精度をベンチマークし,最適化と評価の両方に使用するという信頼性の欠如を明らかにした。
論文 参考訳(メタデータ) (2024-09-26T04:28:35Z) - Beyond Thumbs Up/Down: Untangling Challenges of Fine-Grained Feedback for Text-to-Image Generation [67.88747330066049]
きめ細かいフィードバックは、画像の品質と迅速な調整におけるニュアンスドの区別を捉えます。
粗いフィードバックに対する優位性を示すことは、自動ではないことを示す。
きめ細かいフィードバックを抽出し活用する上で重要な課題を特定します。
論文 参考訳(メタデータ) (2024-06-24T17:19:34Z) - EVALALIGN: Supervised Fine-Tuning Multimodal LLMs with Human-Aligned Data for Evaluating Text-to-Image Models [16.18275805302776]
本稿では,その精度,安定性,微粒度を特徴とする計量であるEvalAlignを提案する。
画像の忠実度とテキスト画像のアライメントという2つの重要な側面に焦点を当てた評価プロトコルを開発する。
EvalAlignは、既存のメトリクスよりも人間の好みと密に一致し、モデルアセスメントの有効性と有用性を確認している。
論文 参考訳(メタデータ) (2024-06-24T11:56:15Z) - Calibrated Self-Rewarding Vision Language Models [27.686545023186852]
LVLM(Large Vision-Language Models)は、訓練済みの大規模言語モデル(LLM)と視覚モデルを統合することで、指導チューニングを通じて大幅に進歩した。
LVLMは、しばしば幻覚現象を示し、生成されたテキスト応答は言語的に妥当に見えるが、入力画像に矛盾する。
本稿では,候補応答を反復的に生成し,各応答に対する報酬を評価し,微調整のための選好データをキュレートすることで,モデルの自己改善を可能にするCalibrated Self-Rewarding(CSR)アプローチを提案する。
論文 参考訳(メタデータ) (2024-05-23T14:30:33Z) - Multimodal Large Language Model is a Human-Aligned Annotator for Text-to-Image Generation [87.50120181861362]
VisionPreferは高品質できめ細かい選好データセットで、複数の選好面をキャプチャする。
我々は、VisionPrefer上で報酬モデルVP-Scoreをトレーニングし、テキストから画像への生成モデルのトレーニングを指導し、VP-Scoreの嗜好予測精度は人間のアノテーションに匹敵する。
論文 参考訳(メタデータ) (2024-04-23T14:53:15Z) - Aligning Text-to-Image Models using Human Feedback [104.76638092169604]
現在のテキスト・ツー・イメージモデルは、しばしばテキスト・プロンプトと不適切に一致した画像を生成する。
そこで本研究では,人間のフィードバックを用いて,そのようなモデルを調整するための微調整手法を提案する。
その結果,人間のフィードバックから学び,テキスト・ツー・イメージ・モデルを大幅に改善する可能性が示された。
論文 参考訳(メタデータ) (2023-02-23T17:34:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。