Lookahead Exploration with Neural Radiance Representation for Continuous Vision-Language Navigation
- URL: http://arxiv.org/abs/2404.01943v1
- Date: Tue, 2 Apr 2024 13:36:03 GMT
- Title: Lookahead Exploration with Neural Radiance Representation for Continuous Vision-Language Navigation
- Authors: Zihan Wang, Xiangyang Li, Jiahao Yang, Yeqi Liu, Junjie Hu, Ming Jiang, Shuqiang Jiang,
- Abstract summary: Vision-and-language navigation (VLN) enables the agent to navigate to a remote location following the natural language instruction in 3D environments.
For better navigation planning, the lookahead exploration strategy aims to effectively evaluate the agent's next action by accurately anticipating the future environment of candidate locations.
- Score: 41.38630220744729
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vision-and-language navigation (VLN) enables the agent to navigate to a remote location following the natural language instruction in 3D environments. At each navigation step, the agent selects from possible candidate locations and then makes the move. For better navigation planning, the lookahead exploration strategy aims to effectively evaluate the agent's next action by accurately anticipating the future environment of candidate locations. To this end, some existing works predict RGB images for future environments, while this strategy suffers from image distortion and high computational cost. To address these issues, we propose the pre-trained hierarchical neural radiance representation model (HNR) to produce multi-level semantic features for future environments, which are more robust and efficient than pixel-wise RGB reconstruction. Furthermore, with the predicted future environmental representations, our lookahead VLN model is able to construct the navigable future path tree and select the optimal path via efficient parallel evaluation. Extensive experiments on the VLN-CE datasets confirm the effectiveness of our method.
Related papers
- UnitedVLN: Generalizable Gaussian Splatting for Continuous Vision-Language Navigation [71.97405667493477]
We introduce a novel, generalizable 3DGS-based pre-training paradigm, called UnitedVLN.
It enables agents to better explore future environments by unitedly rendering high-fidelity 360 visual images and semantic features.
UnitedVLN outperforms state-of-the-art methods on existing VLN-CE benchmarks.
arXiv Detail & Related papers (2024-11-25T02:44:59Z) - PRET: Planning with Directed Fidelity Trajectory for Vision and Language Navigation [30.710806048991923]
Vision and language navigation is a task that requires an agent to navigate according to a natural language instruction.
Recent methods predict sub-goals on constructed topology map at each step to enable long-term action planning.
We propose an alternative method that facilitates navigation planning by considering the alignment between instructions and directed fidelity trajectories.
arXiv Detail & Related papers (2024-07-16T08:22:18Z) - Affordances-Oriented Planning using Foundation Models for Continuous Vision-Language Navigation [64.84996994779443]
We propose a novel Affordances-Oriented Planner for continuous vision-language navigation (VLN) task.
Our AO-Planner integrates various foundation models to achieve affordances-oriented low-level motion planning and high-level decision-making.
Experiments on the challenging R2R-CE and RxR-CE datasets show that AO-Planner achieves state-of-the-art zero-shot performance.
arXiv Detail & Related papers (2024-07-08T12:52:46Z) - Interactive Semantic Map Representation for Skill-based Visual Object
Navigation [43.71312386938849]
This paper introduces a new representation of a scene semantic map formed during the embodied agent interaction with the indoor environment.
We have implemented this representation into a full-fledged navigation approach called SkillTron.
The proposed approach makes it possible to form both intermediate goals for robot exploration and the final goal for object navigation.
arXiv Detail & Related papers (2023-11-07T16:30:12Z) - Improving Vision-and-Language Navigation by Generating Future-View Image
Semantics [96.8435716885159]
Vision-and-Language Navigation (VLN) is the task that requires an agent to navigate through the environment based on natural language instructions.
We propose three proxy tasks during the agent's in-domain pre-training: Masked Panorama Modeling (MPM), Masked Trajectory Modeling (MTM), and Action Prediction with Image Generation (APIG)
We then fine-tune the agent on the VLN task with an auxiliary loss that minimizes the difference between the view semantics generated by the agent and the ground truth view semantics of the next step.
arXiv Detail & Related papers (2023-04-11T00:36:02Z) - Bridging the Gap Between Learning in Discrete and Continuous
Environments for Vision-and-Language Navigation [41.334731014665316]
Most existing works in vision-and-language navigation (VLN) focus on either discrete or continuous environments.
We propose a predictor to generate a set of candidate waypoints during navigation.
We show that agents navigating in continuous environments with predicted waypoints perform significantly better than agents using low-level actions.
arXiv Detail & Related papers (2022-03-05T14:56:14Z) - GANav: Group-wise Attention Network for Classifying Navigable Regions in
Unstructured Outdoor Environments [54.21959527308051]
We present a new learning-based method for identifying safe and navigable regions in off-road terrains and unstructured environments from RGB images.
Our approach consists of classifying groups of terrain classes based on their navigability levels using coarse-grained semantic segmentation.
We show through extensive evaluations on the RUGD and RELLIS-3D datasets that our learning algorithm improves the accuracy of visual perception in off-road terrains for navigation.
arXiv Detail & Related papers (2021-03-07T02:16:24Z) - Occupancy Anticipation for Efficient Exploration and Navigation [97.17517060585875]
We propose occupancy anticipation, where the agent uses its egocentric RGB-D observations to infer the occupancy state beyond the visible regions.
By exploiting context in both the egocentric views and top-down maps our model successfully anticipates a broader map of the environment.
Our approach is the winning entry in the 2020 Habitat PointNav Challenge.
arXiv Detail & Related papers (2020-08-21T03:16:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.