論文の概要: Quantifying Noise of Dynamic Vision Sensor
- arxiv url: http://arxiv.org/abs/2404.01948v1
- Date: Tue, 2 Apr 2024 13:43:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-03 16:19:00.872262
- Title: Quantifying Noise of Dynamic Vision Sensor
- Title(参考訳): ダイナミックビジョンセンサのノイズの定量化
- Authors: Evgeny V. Votyakov, Alessandro Artusi,
- Abstract要約: 動的視覚センサ(DVS)は、大量のバックグラウンドアクティビティ(BA)ノイズによって特徴付けられる。
標準的な画像処理技術を用いて,ノイズとクリーン化センサ信号とを区別することは困難である。
Detrended Fluctuation Analysis (DFA) から得られたBAノイズを特徴付ける新しい手法が提案されている。
- 参考スコア(独自算出の注目度): 49.665407116447454
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dynamic visual sensors (DVS) are characterized by a large amount of background activity (BA) noise, which it is mixed with the original (cleaned) sensor signal. The dynamic nature of the signal and the absence in practical application of the ground truth, it clearly makes difficult to distinguish between noise and the cleaned sensor signals using standard image processing techniques. In this letter, a new technique is presented to characterise BA noise derived from the Detrended Fluctuation Analysis (DFA). The proposed technique can be used to address an existing DVS issues, which is how to quantitatively characterised noise and signal without ground truth, and how to derive an optimal denoising filter parameters. The solution of the latter problem is demonstrated for the popular real moving-car dataset.
- Abstract(参考訳): 動的視覚センサ(DVS)は、元の(クリーン化された)センサ信号と混在する大量のバックグラウンドアクティビティ(BA)ノイズによって特徴付けられる。
信号のダイナミックな性質と、地上の真実の実践的適用の欠如により、標準的な画像処理技術を用いて、ノイズと浄化されたセンサ信号の区別が困難であることは明らかである。
本稿では,DFA(Detrended Fluctuation Analysis)から得られたBAノイズを特徴付ける新しい手法を提案する。
提案手法は既存のDVS問題に対処するために使用することができる。これは、基底的真理を伴わずにノイズや信号を定量的に特徴付ける方法であり、最適なデノナイジングフィルタパラメータを導出する方法である。
後者の問題の解決策は、一般的な実動車データセットに対して実証されている。
関連論文リスト
- Unsupervised Denoising for Signal-Dependent and Row-Correlated Imaging Noise [54.0185721303932]
本稿では,行関連の画像ノイズを処理できる,教師なしのディープラーニングベースデノイザについて紹介する。
提案手法では,特殊設計の自己回帰デコーダを備えた変分オートエンコーダを用いる。
本手法では,事前学習した雑音モデルを必要としないため,雑音のないデータを用いてスクラッチから訓練することができる。
論文 参考訳(メタデータ) (2023-10-11T20:48:20Z) - Towards General Low-Light Raw Noise Synthesis and Modeling [37.87312467017369]
生成モデルにより信号非依存ノイズを合成する新しい視点を導入する。
具体的には、信号に依存しないノイズと信号に依存しないノイズを物理と学習に基づく方法で合成する。
このようにして、本手法は一般的なモデルとみなすことができ、つまり、異なるISOレベルの異なるノイズ特性を同時に学習することができる。
論文 参考訳(メタデータ) (2023-07-31T09:10:10Z) - DINF: Dynamic Instance Noise Filter for Occluded Pedestrian Detection [0.0]
RCNNベースの歩行者検出器は、矩形領域を使用してインスタンスの特徴を抽出する。
重なり合うオブジェクトの数とわずかに重なり合うオブジェクトの数は不均衡である。
RCNNをベースとした歩行者検知器の信号雑音比を改善するために, 繰り返し動的インスタンスノイズフィルタ (DINF) を提案する。
論文 参考訳(メタデータ) (2023-01-13T14:12:36Z) - CFNet: Conditional Filter Learning with Dynamic Noise Estimation for
Real Image Denoising [37.29552796977652]
本稿では、カメラ内信号処理パイプラインを用いた異方性ガウス/ポアソンガウス分布によって近似された実雑音について考察する。
本稿では,特徴位置の異なる最適なカーネルを画像とノイズマップの局所的特徴により適応的に推定できる条件付きフィルタを提案する。
また,CNN構造にノイズ推定や非ブラインド復調を行う場合,反復的特徴復調を導出する前に連続的にノイズを更新すると考える。
論文 参考訳(メタデータ) (2022-11-26T14:28:54Z) - Learning Task-Oriented Flows to Mutually Guide Feature Alignment in
Synthesized and Real Video Denoising [137.5080784570804]
Video Denoisingは、クリーンなノイズを回復するためにビデオからノイズを取り除くことを目的としている。
既存の研究によっては、近辺のフレームから追加の空間的時間的手がかりを利用することで、光学的流れがノイズ発生の助けとなることが示されている。
本稿では,様々なノイズレベルに対してより堅牢なマルチスケール光フロー誘導型ビデオデノイング法を提案する。
論文 参考訳(メタデータ) (2022-08-25T00:09:18Z) - SAR Despeckling using a Denoising Diffusion Probabilistic Model [52.25981472415249]
スペックルの存在は画像品質を劣化させ、SAR画像理解アプリケーションの性能に悪影響を及ぼす。
本稿では,SAR脱種のための拡散確率モデルであるSAR-DDPMを紹介する。
提案手法は, 最先端の切り離し法と比較して, 定量化と定性化の両面で有意な改善を実現している。
論文 参考訳(メタデータ) (2022-06-09T14:00:26Z) - FINO: Flow-based Joint Image and Noise Model [23.9749061109964]
フローベースジョイントイメージとノイズモデル(FINO)
本研究では,フローベース・ジョイント・イメージ・アンド・ノイズモデル(FINO)を提案する。
論文 参考訳(メタデータ) (2021-11-11T02:51:54Z) - Rethinking Noise Synthesis and Modeling in Raw Denoising [75.55136662685341]
センサの実際の雑音を直接サンプリングすることで、ノイズを合成する新しい視点を導入する。
それは本質的に、異なるカメラセンサーに対して正確な生画像ノイズを発生させる。
論文 参考訳(メタデータ) (2021-10-10T10:45:24Z) - Variational Denoising Network: Toward Blind Noise Modeling and Removal [59.36166491196973]
ブラインド画像のデノイングはコンピュータビジョンにおいて重要な問題であるが、非常に難しい問題である。
本稿では,ノイズ推定と画像デノーミングを併用した新しい変分推論手法を提案する。
論文 参考訳(メタデータ) (2019-08-29T15:54:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。