論文の概要: Bi-LORA: A Vision-Language Approach for Synthetic Image Detection
- arxiv url: http://arxiv.org/abs/2404.01959v2
- Date: Sun, 7 Apr 2024 05:26:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-09 23:56:54.041122
- Title: Bi-LORA: A Vision-Language Approach for Synthetic Image Detection
- Title(参考訳): Bi-LORA:合成画像検出のための視覚言語アプローチ
- Authors: Mamadou Keita, Wassim Hamidouche, Hessen Bougueffa Eutamene, Abdenour Hadid, Abdelmalik Taleb-Ahmed,
- Abstract要約: 生成逆数ネットワーク(GAN)や拡散モデル(DM)のような深層画像合成技術は、非常に現実的な画像を生成する時代に定着してきた。
本稿では、視覚言語モデル(VLM)のゼロショット特性と相まって、視覚と言語の間の強力な収束能力から着想を得る。
我々は,VLMと低ランク適応(LORA)チューニング技術を組み合わせたBi-LORAと呼ばれる革新的な手法を導入し,未知のモデル生成画像に対する合成画像検出の精度を向上させる。
- 参考スコア(独自算出の注目度): 14.448350657613364
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Advancements in deep image synthesis techniques, such as generative adversarial networks (GANs) and diffusion models (DMs), have ushered in an era of generating highly realistic images. While this technological progress has captured significant interest, it has also raised concerns about the potential difficulty in distinguishing real images from their synthetic counterparts. This paper takes inspiration from the potent convergence capabilities between vision and language, coupled with the zero-shot nature of vision-language models (VLMs). We introduce an innovative method called Bi-LORA that leverages VLMs, combined with low-rank adaptation (LORA) tuning techniques, to enhance the precision of synthetic image detection for unseen model-generated images. The pivotal conceptual shift in our methodology revolves around reframing binary classification as an image captioning task, leveraging the distinctive capabilities of cutting-edge VLM, notably bootstrapping language image pre-training (BLIP2). Rigorous and comprehensive experiments are conducted to validate the effectiveness of our proposed approach, particularly in detecting unseen diffusion-generated images from unknown diffusion-based generative models during training, showcasing robustness to noise, and demonstrating generalization capabilities to GANs. The obtained results showcase an impressive average accuracy of 93.41% in synthetic image detection on unseen generation models. The code and models associated with this research can be publicly accessed at https://github.com/Mamadou-Keita/VLM-DETECT.
- Abstract(参考訳): GAN(Generative Adversarial Network)や拡散モデル(Difusion Model)といった深層画像合成技術の進歩は、高度に現実的な画像を生成する時代を後押ししている。
この技術進歩は大きな関心を集めているが、実際の画像と合成画像とを区別することの難しさを懸念する声も上がっている。
本稿では、視覚言語モデル(VLM)のゼロショット特性と相まって、視覚と言語の間の強力な収束能力から着想を得た。
我々は,VLMと低ランク適応(LORA)チューニング技術を組み合わせたBi-LORAと呼ばれる革新的な手法を導入し,未知のモデル生成画像に対する合成画像検出の精度を向上させる。
我々の方法論における重要な概念シフトは、画像キャプションタスクとしてバイナリ分類をリフレーミングすることで、最先端のVLM、特にブートストラップ言語画像事前学習(BLIP2)の特長を活用することである。
提案手法の有効性,特に未知の拡散ベース生成モデルから未知の拡散生成画像を検出し,ノイズに対する堅牢性を示し,GANに対する一般化能力を実証するために,厳密かつ包括的な実験を行った。
その結果, 合成画像検出における平均精度は93.41%であった。
この研究に関連するコードとモデルはhttps://github.com/Mamadou-Keita/VLM-DETECT.comで公開されている。
関連論文リスト
- Time Step Generating: A Universal Synthesized Deepfake Image Detector [0.4488895231267077]
汎用合成画像検出器 Time Step Generating (TSG) を提案する。
TSGは、事前訓練されたモデルの再構築能力、特定のデータセット、サンプリングアルゴリズムに依存していない。
我々は,提案したTSGを大規模GenImageベンチマークで検証し,精度と一般化性の両方において大幅な改善を実現した。
論文 参考訳(メタデータ) (2024-11-17T09:39:50Z) - MFCLIP: Multi-modal Fine-grained CLIP for Generalizable Diffusion Face Forgery Detection [64.29452783056253]
フォトリアリスティック・フェイスジェネレーション手法の急速な発展は、社会やアカデミックにおいて大きな関心を集めている。
既存のアプローチは主に画像モダリティを用いて顔の偽造パターンをキャプチャするが、きめ細かいノイズやテキストのような他のモダリティは完全には探索されていない。
そこで本研究では,画像ノイズの多点にわたる包括的かつきめ細かなフォージェリートレースをマイニングする,MFCLIP(MF-modal Fine-fine-fine-fine-fine-fine CLIP)モデルを提案する。
論文 参考訳(メタデータ) (2024-09-15T13:08:59Z) - StealthDiffusion: Towards Evading Diffusion Forensic Detection through Diffusion Model [62.25424831998405]
StealthDiffusionは、AI生成した画像を高品質で受け入れがたい敵の例に修正するフレームワークである。
ホワイトボックスとブラックボックスの設定の両方で有効であり、AI生成した画像を高品質な敵の偽造に変換する。
論文 参考訳(メタデータ) (2024-08-11T01:22:29Z) - ASAP: Interpretable Analysis and Summarization of AI-generated Image Patterns at Scale [20.12991230544801]
生成画像モデルは、現実的な画像を生成するための有望な技術として登場してきた。
ユーザーがAI生成画像のパターンを効果的に識別し理解できるようにするための需要が高まっている。
我々はAI生成画像の異なるパターンを自動的に抽出する対話型可視化システムASAPを開発した。
論文 参考訳(メタデータ) (2024-04-03T18:20:41Z) - Harnessing the Power of Large Vision Language Models for Synthetic Image Detection [14.448350657613364]
本研究では,合成画像識別における高度な視覚言語モデル(VLM)の有効性について検討した。
大規模VLMの頑健な理解能力を活用することにより,拡散モデルによる合成画像と真正画像の識別が目的である。
論文 参考訳(メタデータ) (2024-04-03T13:27:54Z) - Forgery-aware Adaptive Transformer for Generalizable Synthetic Image
Detection [106.39544368711427]
本研究では,様々な生成手法から偽画像を検出することを目的とした,一般化可能な合成画像検出の課題について検討する。
本稿では,FatFormerという新しいフォージェリー適応トランスフォーマー手法を提案する。
提案手法は, 平均98%の精度でGANを観測し, 95%の精度で拡散モデルを解析した。
論文 参考訳(メタデータ) (2023-12-27T17:36:32Z) - DiffDis: Empowering Generative Diffusion Model with Cross-Modal
Discrimination Capability [75.9781362556431]
本稿では,拡散過程下での1つのフレームワークに,モダクティブと差別的事前学習を統一するDiffDisを提案する。
DiffDisは画像生成タスクと画像テキスト識別タスクの両方において単一タスクモデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T05:03:48Z) - Generalizable Synthetic Image Detection via Language-guided Contrastive
Learning [22.4158195581231]
偽ニュースの拡散や偽のプロフィールの作成などの合成画像の真偽の使用は、画像の真正性に関する重要な懸念を提起する。
本稿では,言語指導によるコントラスト学習と検出問題の新たな定式化による,シンプルで効果的な合成画像検出手法を提案する。
提案したLanguAge-guided SynThEsis Detection (LASTED) モデルでは,画像生成モデルに対する一般化性が大幅に向上していることが示されている。
論文 参考訳(メタデータ) (2023-05-23T08:13:27Z) - Improving Synthetically Generated Image Detection in Cross-Concept
Settings [20.21594285488186]
我々は、例えば、人間の顔に検出器を訓練する際に、様々な概念クラスをまたがって一般化するという課題に焦点をあてる。
本稿では,現実的な合成画像上での学習により,検出器の堅牢性を向上できるという前提に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2023-04-24T12:45:00Z) - Parents and Children: Distinguishing Multimodal DeepFakes from Natural Images [60.34381768479834]
近年の拡散モデルの発展により、自然言語のテキストプロンプトから現実的なディープフェイクの生成が可能になった。
我々は、最先端拡散モデルにより生成されたディープフェイク検出に関する体系的研究を開拓した。
論文 参考訳(メタデータ) (2023-04-02T10:25:09Z) - IMAGINE: Image Synthesis by Image-Guided Model Inversion [79.4691654458141]
IMGE-Guided Model INvErsion (IMAGINE) と呼ばれるインバージョンベースの手法を導入し、高品質で多様な画像を生成します。
我々は,事前学習した分類器から画像意味論の知識を活用し,妥当な世代を実現する。
IMAGINEは,1)合成中の意味的特異性制約を同時に実施し,2)ジェネレータトレーニングなしでリアルな画像を生成し,3)生成過程を直感的に制御する。
論文 参考訳(メタデータ) (2021-04-13T02:00:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。