DELAN: Dual-Level Alignment for Vision-and-Language Navigation by Cross-Modal Contrastive Learning
- URL: http://arxiv.org/abs/2404.01994v1
- Date: Tue, 2 Apr 2024 14:40:04 GMT
- Title: DELAN: Dual-Level Alignment for Vision-and-Language Navigation by Cross-Modal Contrastive Learning
- Authors: Mengfei Du, Binhao Wu, Jiwen Zhang, Zhihao Fan, Zejun Li, Ruipu Luo, Xuanjing Huang, Zhongyu Wei,
- Abstract summary: Vision-and-Language navigation (VLN) requires an agent to navigate in unseen environment by following natural language instruction.
For task completion, the agent needs to align and integrate various navigation modalities, including instruction, observation and navigation history.
- Score: 40.87681228125296
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vision-and-Language navigation (VLN) requires an agent to navigate in unseen environment by following natural language instruction. For task completion, the agent needs to align and integrate various navigation modalities, including instruction, observation and navigation history. Existing works primarily concentrate on cross-modal attention at the fusion stage to achieve this objective. Nevertheless, modality features generated by disparate uni-encoders reside in their own spaces, leading to a decline in the quality of cross-modal fusion and decision. To address this problem, we propose a Dual-levEL AligNment (DELAN) framework by cross-modal contrastive learning. This framework is designed to align various navigation-related modalities before fusion, thereby enhancing cross-modal interaction and action decision-making. Specifically, we divide the pre-fusion alignment into dual levels: instruction-history level and landmark-observation level according to their semantic correlations. We also reconstruct a dual-level instruction for adaptation to the dual-level alignment. As the training signals for pre-fusion alignment are extremely limited, self-supervised contrastive learning strategies are employed to enforce the matching between different modalities. Our approach seamlessly integrates with the majority of existing models, resulting in improved navigation performance on various VLN benchmarks, including R2R, R4R, RxR and CVDN.
Related papers
- Towards Spoken Language Understanding via Multi-level Multi-grained Contrastive Learning [50.1035273069458]
Spoken language understanding (SLU) is a core task in task-oriented dialogue systems.
We propose a multi-level MMCL framework to apply contrastive learning at three levels, including utterance level, slot level, and word level.
Our framework achieves new state-of-the-art results on two public multi-intent SLU datasets.
arXiv Detail & Related papers (2024-05-31T14:34:23Z) - Grounded Entity-Landmark Adaptive Pre-training for Vision-and-Language
Navigation [23.94546957057613]
Cross-modal alignment is one key challenge for Vision-and-Language Navigation (VLN)
We propose a novel Grounded Entity-Landmark Adaptive (GELA) pre-training paradigm for VLN tasks.
arXiv Detail & Related papers (2023-08-24T06:25:20Z) - Bridging the Gap Between Learning in Discrete and Continuous
Environments for Vision-and-Language Navigation [41.334731014665316]
Most existing works in vision-and-language navigation (VLN) focus on either discrete or continuous environments.
We propose a predictor to generate a set of candidate waypoints during navigation.
We show that agents navigating in continuous environments with predicted waypoints perform significantly better than agents using low-level actions.
arXiv Detail & Related papers (2022-03-05T14:56:14Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
Semi-supervised domain adaptation (SSDA) is a challenging problem requiring methods to overcome both 1) overfitting towards poorly annotated data and 2) distribution shift across domains.
We introduce an adaptive structure learning method to regularize the cooperation of SSL and DA.
arXiv Detail & Related papers (2021-12-12T06:11:16Z) - Contrastive Instruction-Trajectory Learning for Vision-Language
Navigation [66.16980504844233]
A vision-language navigation (VLN) task requires an agent to reach a target with the guidance of natural language instruction.
Previous works fail to discriminate the similarities and discrepancies across instruction-trajectory pairs and ignore the temporal continuity of sub-instructions.
We propose a Contrastive Instruction-Trajectory Learning framework that explores invariance across similar data samples and variance across different ones to learn distinctive representations for robust navigation.
arXiv Detail & Related papers (2021-12-08T06:32:52Z) - Learning Relation Alignment for Calibrated Cross-modal Retrieval [52.760541762871505]
We propose a novel metric, Intra-modal Self-attention Distance (ISD), to quantify the relation consistency by measuring the semantic distance between linguistic and visual relations.
We present Inter-modal Alignment on Intra-modal Self-attentions (IAIS), a regularized training method to optimize the ISD and calibrate intra-modal self-attentions mutually via inter-modal alignment.
arXiv Detail & Related papers (2021-05-28T14:25:49Z) - Language-guided Navigation via Cross-Modal Grounding and Alternate
Adversarial Learning [66.9937776799536]
The emerging vision-and-language navigation (VLN) problem aims at learning to navigate an agent to the target location in unseen photo-realistic environments.
The main challenges of VLN arise mainly from two aspects: first, the agent needs to attend to the meaningful paragraphs of the language instruction corresponding to the dynamically-varying visual environments.
We propose a cross-modal grounding module to equip the agent with a better ability to track the correspondence between the textual and visual modalities.
arXiv Detail & Related papers (2020-11-22T09:13:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.