DART: Dual Adaptive Refinement Transfer for Open-Vocabulary Multi-Label Recognition
- URL: http://arxiv.org/abs/2508.05585v1
- Date: Thu, 07 Aug 2025 17:22:33 GMT
- Title: DART: Dual Adaptive Refinement Transfer for Open-Vocabulary Multi-Label Recognition
- Authors: Haijing Liu, Tao Pu, Hefeng Wu, Keze Wang, Liang Lin,
- Abstract summary: Open-Vocabulary Multi-Label Recognition (OV-MLR) aims to identify multiple seen and unseen object categories within an image.<n> Vision-Language Pre-training models offer a strong open-vocabulary foundation, but struggle with fine-grained localization under weak supervision.<n>We propose the Dual Adaptive Refinement Transfer (DART) framework to overcome these limitations.
- Score: 59.203152078315235
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Open-Vocabulary Multi-Label Recognition (OV-MLR) aims to identify multiple seen and unseen object categories within an image, requiring both precise intra-class localization to pinpoint objects and effective inter-class reasoning to model complex category dependencies. While Vision-Language Pre-training (VLP) models offer a strong open-vocabulary foundation, they often struggle with fine-grained localization under weak supervision and typically fail to explicitly leverage structured relational knowledge beyond basic semantics, limiting performance especially for unseen classes. To overcome these limitations, we propose the Dual Adaptive Refinement Transfer (DART) framework. DART enhances a frozen VLP backbone via two synergistic adaptive modules. For intra-class refinement, an Adaptive Refinement Module (ARM) refines patch features adaptively, coupled with a novel Weakly Supervised Patch Selecting (WPS) loss that enables discriminative localization using only image-level labels. Concurrently, for inter-class transfer, an Adaptive Transfer Module (ATM) leverages a Class Relationship Graph (CRG), constructed using structured knowledge mined from a Large Language Model (LLM), and employs graph attention network to adaptively transfer relational information between class representations. DART is the first framework, to our knowledge, to explicitly integrate external LLM-derived relational knowledge for adaptive inter-class transfer while simultaneously performing adaptive intra-class refinement under weak supervision for OV-MLR. Extensive experiments on challenging benchmarks demonstrate that our DART achieves new state-of-the-art performance, validating its effectiveness.
Related papers
- Towards Fine-Grained Adaptation of CLIP via a Self-Trained Alignment Score [11.74414842618874]
We show that modeling fine-grained cross-modal interactions during adaptation produces more accurate, class-discriminative pseudo-labels.<n>We introduce Fine-grained Alignment and Interaction Refinement (FAIR), an innovative approach that dynamically aligns localized image features with descriptive language embeddings.<n>Our approach, FAIR, delivers a substantial performance boost in fine-grained unsupervised adaptation, achieving a notable overall gain of 2.78%.
arXiv Detail & Related papers (2025-07-13T12:38:38Z) - Semantic-Aligned Learning with Collaborative Refinement for Unsupervised VI-ReID [82.12123628480371]
Unsupervised person re-identification (USL-VI-ReID) seeks to match pedestrian images of the same individual across different modalities without human annotations for model learning.<n>Previous methods unify pseudo-labels of cross-modality images through label association algorithms and then design contrastive learning framework for global feature learning.<n>We propose a Semantic-Aligned Learning with Collaborative Refinement (SALCR) framework, which builds up objective for specific fine-grained patterns emphasized by each modality.
arXiv Detail & Related papers (2025-04-27T13:58:12Z) - Without Paired Labeled Data: End-to-End Self-Supervised Learning for Drone-view Geo-Localization [2.733505168507872]
Drone-view Geo-Localization (DVGL) aims to achieve accurate localization of drones by retrieving the most relevant GPS-tagged satellite images.<n>Existing methods heavily rely on strictly pre-paired drone-satellite images for supervised learning.<n>We propose an end-to-end self-supervised learning method with a shallow backbone network.
arXiv Detail & Related papers (2025-02-17T02:53:08Z) - FedRSClip: Federated Learning for Remote Sensing Scene Classification Using Vision-Language Models [23.830133838392964]
We propose FedRSCLIP, the first federated learning framework for remote sensing image classification based on a VLM, specifically CLIP.<n>FedRSCLIP addresses the challenges of data heterogeneity and large-scale model transmission in federated environments by introducing Prompt Learning.<n>To validate the effectiveness of our proposed model, we construct a Fed-RSIC dataset based on three existing remote sensing image classification datasets.
arXiv Detail & Related papers (2025-01-05T07:10:27Z) - Category-Adaptive Cross-Modal Semantic Refinement and Transfer for Open-Vocabulary Multi-Label Recognition [59.203152078315235]
We propose a novel category-adaptive cross-modal semantic refinement and transfer (C$2$SRT) framework to explore the semantic correlation.<n>The proposed framework consists of two complementary modules, i.e., intra-category semantic refinement (ISR) module and inter-category semantic transfer (IST) module.<n>Experiments on OV-MLR benchmarks clearly demonstrate that the proposed C$2$SRT framework outperforms current state-of-the-art algorithms.
arXiv Detail & Related papers (2024-12-09T04:00:18Z) - Dude: Dual Distribution-Aware Context Prompt Learning For Large Vision-Language Model [27.56988000960972]
We introduce a new framework based on a dual context of both domain-shared and class-specific contexts.
Such dual prompt methods enhance the model's feature representation by joining implicit and explicit factors encoded in Large Language Models.
We also formulate the Unbalanced Optimal Transport (UOT) theory to quantify the relationships between constructed prompts and visual tokens.
arXiv Detail & Related papers (2024-07-05T13:15:29Z) - USER: Unified Semantic Enhancement with Momentum Contrast for Image-Text
Retrieval [115.28586222748478]
Image-Text Retrieval (ITR) aims at searching for the target instances that are semantically relevant to the given query from the other modality.
Existing approaches typically suffer from two major limitations.
arXiv Detail & Related papers (2023-01-17T12:42:58Z) - SIM-Trans: Structure Information Modeling Transformer for Fine-grained
Visual Categorization [59.732036564862796]
We propose the Structure Information Modeling Transformer (SIM-Trans) to incorporate object structure information into transformer for enhancing discriminative representation learning.
The proposed two modules are light-weighted and can be plugged into any transformer network and trained end-to-end easily.
Experiments and analyses demonstrate that the proposed SIM-Trans achieves state-of-the-art performance on fine-grained visual categorization benchmarks.
arXiv Detail & Related papers (2022-08-31T03:00:07Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
Semi-supervised domain adaptation (SSDA) is a challenging problem requiring methods to overcome both 1) overfitting towards poorly annotated data and 2) distribution shift across domains.
We introduce an adaptive structure learning method to regularize the cooperation of SSL and DA.
arXiv Detail & Related papers (2021-12-12T06:11:16Z) - Weakly supervised segmentation with cross-modality equivariant
constraints [7.757293476741071]
Weakly supervised learning has emerged as an appealing alternative to alleviate the need for large labeled datasets in semantic segmentation.
We present a novel learning strategy that leverages self-supervision in a multi-modal image scenario to significantly enhance original CAMs.
Our approach outperforms relevant recent literature under the same learning conditions.
arXiv Detail & Related papers (2021-04-06T13:14:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.